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Abstract

This paper examines how exposure to weather events affects earnings forecasts of equity an-

alysts, using a unique dataset that matches natural disasters with the location of analysts

across the US over 2000-2020. I find that analysts’ earnings forecasts become more accurate

after experiencing an extreme weather event. This effect on forecasting accuracy is persis-

tent up to 1.5 years and is more pronounced for firms with high climate risks, when there is

greater asymmetric information and for experienced analysts. These results suggest that the

observed enhancement in forecast accuracy is driven by information acquisition rather than

behavioral biases, indicating that such events prompt analysts to rationally acquire and incor-

porate more information into their forecasts. This information acquisition process does not

spill over to analysts distant from the event. However, I observe that brokerage firms capitalize

on this increased analyst accuracy by hiring more analysts with expertise in stocks which are

particularly sensitive to climate risks.
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1 Introduction

Natural disasters in the U.S. have caused approximately $2.8 trillion in damages over 1980-2023,

and this number is expected to rise as global warming intensifies (NOAA, 2023).1 Studies have

shown that personal experience with extreme weather events leads to greater climate awareness,

influencing various decisions. For example, support for environmental policies increases after such

events (Hoffmann et al., 2022), investors reduce their holdings of high-emission stocks (Choi et al.,

2020), and households shift to greener investments (Anderson and Robinson, 2019). However, the

precise mechanisms driving changes in behavior remain largely unexplored.

This paper aims to uncover some of these mechanisms by studying how equity analysts ad-

just their earnings forecasts after experiencing weather events. Equity analysts are key information

providers (Mikhail et al., 2007), regularly issuing detailed and timely earnings forecasts. My empiri-

cal strategy relies on a staggered difference-in-differences approach, comparing the earnings forecasts

made by analysts exposed to the event with those made by analysts not exposed. Importantly, I

focus on forecasts for firms that were not affected by the event, to study changes in forecasts driven

by shifts in analysts’ climate beliefs—expectations about the impact of climate change on firm

performance—rather than efforts to estimate the event’s direct costs.

I propose two mechanisms for why analysts might adjust their earnings forecasts following

weather events. The information hypothesis posits that these events prompt analysts to rationally

seek out and incorporate more information about climate change, thereby improving their ability

to assess climate risks. These risks include physical risks, such as natural disasters, and transition

risks associated with carbon reduction policies. In contrast, the behavioral hypothesis posits that

extreme weather events may have an emotional impact on analysts, leading them to overestimate

climate risks without any clear and long-term effect on their forecasting ability.2

1This estimate is a lower bound, as it does not fully capture indirect economic losses. For instance, higher temperatures
increase workplace injuries (Park et al., 2021), reduce firm sales, and raise operating costs (Hugon and Law, 2019).
When weather shocks disrupt supply chains, companies experience a decrease in operating performance (Pankratz
and Schiller, 2021) and lose sales (Barrot and Sauvagnat, 2016 and Custodio et al., 2021). Firms in high-risk areas
for weather events face more volatile earnings and cash flows (Huang et al., 2018). For this reason, both scholars and
practitioners regard physical risks as the most significant source of long-term climate risk (Stroebel and Wurgler,
2021).

2Determining which mechanism predominates is critical for informing public policy (Deryugina, 2013). Policies like
the SEC’s climate disclosure rule (March 2024) in the US and the EU Taxonomy, which require companies to disclose
climate-related information, may be less effective if emotional reactions or cognitive biases primarily drive responses
to this information disclosure.
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I find that exposure to extreme weather events leads to more accurate earnings forecasts, consis-

tent with the information hypothesis. The effect is more pronounced for firms facing high physical

climate risk and in settings with greater asymmetric information. This supports the idea that expo-

sure to weather events prompts a reassessment of climate-related beliefs. Moreover, while brokerage

firms seem to capitalize on analysts’ increased accuracy by hiring more analysts, this effect appears

limited to those with firsthand experience of the events, with no spillover to other analysts.

To study the effect of exposure to weather events, I build a comprehensive dataset that matches

the working location of equity analysts with the occurrence of natural hazards across 24 US states

over 2000-2020. The selected events are natural disasters that resulted in at least 100 injuries, 10

fatalities, or $1 billion in economic damages. I document that such events are salient shocks that

influence individuals’ beliefs. Specifically, affected states, where these events occur, show an increase

in Google searches related to climate change (as in Alekseev et al., 2021) and greater concern about

climate change among their population, as measured by the Yale Climate Opinion Data.

Next, I split the sample of analysts into two groups: analysts located within 100 miles from the

weather event (treated analysts) and analysts located farther than 100 miles from the weather event

(control analysts), both forecasting firms that are more than 100 miles distant from the weather

event. The control group includes both analysts who have never been exposed to climate events

(never treated) and analysts who in a given period have not yet been exposed to a weather shock but

who will be exposed in the future (yet-to-be-treated).3 My sample includes 1231 analysts located

in 24 states and covering 2770 firms. About 40% of the analysts in my sample have been exposed

to an extreme weather event and are classified as first-time treated.

To account for the multiple events occurring across different locations, I use a staggered difference-

in-differences estimation. My variables of interest are forecast bias and forecast error. Following

Hong and Kacperczyk (2010), I define forecast bias as the difference between actual and forecasted

earnings per share, scaled by the stock price from the previous period, and forecast error as the

absolute value of this bias. While forecast bias reflects analysts’ relative optimism or pessimism,

forecast error measures the overall accuracy of their forecasts.

The underlying assumption of my setting is that forecasted earnings, besides capturing percep-

3My setting implies that never-treated analysts have never experienced a weather shock since they start working as
analysts. A limitation of my study is that I lack information on the analysts’ locations before they enter the sample.
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tions of firms’ future financial performance based on all available public information, also incorporate

analysts’ non-observable beliefs, including beliefs about climate risks. Given that I focus on weather

shocks that do not directly impact firms’ earnings—occurring more than 100 miles from the firm’s

location and without any accompanying changes in fundamentals— it is plausible that changes in

analysts’ forecasts in response to these shocks are driven by shifts in their beliefs rather than actual

firm performance.

My baseline results show that exposure to weather shocks improves analysts’ forecasts in terms

of both forecast bias and error. The point estimates indicate a statistically significant reduction in

forecast error of 0.07 percentage points (4% of the average forecast error) and 0.06 percentage point

reduction in the forecast bias (8% of the average forecast bias). However, the reduction in bias is

not statistically significant at conventional confidence levels.

To discriminate between the behavioral and information hypotheses, I match detailed informa-

tion about firms’ climate risk profiles, sourced from Trucost, with analysts’ exposure to specific

climate events. Consistent with the information hypothesis, I find that exposure to heatwaves

increases accuracy specifically for firms that are subject to that heatwave risk.

Further, I show that analysts improve their forecast accuracy, especially when forecasting firms

with high information asymmetry. Specifically, they become more accurate for firms with fewer

analysts covering them, no earnings calls in the previous year, no disclosure of climate risks through

the Carbon Disclosure Project, or firms in sectors less exposed to climatic risks. Consistent with

the information hypothesis, they also achieve greater accuracy when working in areas that are, on

average, less prone to large weather events.

As a final step in discriminating between the behavioral and the information channels, I study

the persistence of the exposure effect documented above. I posit that a behavioral response should

be short-lived, whereas a shock that affects an analyst’s ability to process information related to

climate risk should have a more lasting effect. I find that exposure leads to more accurate forecasts

for a period of up to 18 months, thus providing further support for the information channel.4

To provide a more granular understanding of the information hypothesis, I show that my findings

align with the theory of rational attention allocation from Kacperczyk et al. (2016). When weather

4The results of persistence estimations should be taken with caution because they implicitly assume that no additional
information about climate risks is realized in the aftermath of the event. This assumption is less likely to hold when
I extend the horizon of my analysis.
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events occur, the potential payoff from focusing analysts’ attention on the impact of climate-related

events on earnings forecasts increases, leading to the observed improvement in forecasting ability.

Consistent with this theory, I find a significant increase in accuracy among skilled analysts—defined

as those with more industry experience, top performers with smaller forecast errors in their sector,

and lead analysts known for the timeliness of their forecasts—who are better at acquiring and

processing information.

Beyond my core findings, other theories may also contribute to explaining the results. For

example, analysts at larger brokerage firms show greater improvements in accuracy, suggesting that

these events help mitigate conflicts of interest (Michaely and Womack, 1999). A heightened effort

is also evident, as analysts particularly improve their forecasts for high market capitalization firms

(Glode, 2011). However, the increase in accuracy seems specific to first-time exposure. Analysts

become less accurate with subsequent shocks, suggesting they may overestimate their forecasting

abilities after experiencing such events (Anagol et al., 2021).

Moreover, I rule out the possibility that weather events act solely as attention shocks, as both

attentive and inattentive analysts exhibit improved accuracy (Baker et al., 2020). One concern is

that treated analysts, being located near the event, may have less access to information about firms

included in my sample (recall that I only consider firms distant to the event), as in Malloy (2005).

However, I find no significant difference in outcomes between treated and control analysts at similar

distances for a given firm.

To assess whether this response extends beyond earnings forecasts, I examine other aspects of

analysts’ work. I find that analysts also become more accurate in forecasting stock prices, but they

do not change their stock recommendations. While I focus on first-time experiences, examining

analysts with at least one prior experience of a weather event shows that they are more likely to ask

questions about physical risks during earnings calls and less likely to follow firms with high climate

risks. Additionally, when a firm is affected by a weather event, these analysts demonstrate greater

accuracy in their forecasts compared to those without such experience.

I also examine the responses of other financial players, including brokerage houses, distant

analysts, and investors. I find that larger brokerage houses hire more analysts as the number of

treated analysts increases, prompting these firms to cover more companies with higher climate

risks. However, distant analysts, who also forecast companies covered by analysts exposed to the
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event, become more pessimistic, without showing any improvement in forecast accuracy. Similarly,

stock prices of companies do not react to the more accurate forecast revisions made by analysts

exposed to weather events compared to the control analysts. This suggests that while brokerage

firms capitalize on the improved accuracy, this information acquisition does not spill over to other

analysts or investors.

I conduct a battery of robustness checks and show that my results hold when I exclude analysts

based in New York and California (where most analysts are located) and when excluding firms with

plants near the events (my main analysis uses companies’ headquarters locations). The results are

also robust —in fact, they become stronger— if I only consider analysts located within a 50-mile

radius of extreme weather events. I also conduct a placebo test by randomly generating shocks

across the U.S. over the 20-year period of the study and find no significant effect on analysts’

forecast bias or error. This suggests that the observed impact on analyst pessimism and accuracy

is not driven by mean reversion.

Overall, my results contribute to the growing literature on how individuals form and update

beliefs about climate risks (e.g., Deryugina, 2013; Krueger et al., 2020; Ceccarelli and Ramelli,

2024; Bauer et al., 2024) by showing how experiencing weather events can raise climate awareness.

They also enhance our understanding of the impact of climate events on financial markets (e.g.,

Anderson and Robinson, 2019; Choi et al., 2020; Alekseev et al., 2021) by providing insights from

information providers. Finally, this study builds on the literature regarding analysts’ responses

to climate events (e.g., Cuculiza et al., 2021; Addoum et al., 2020; Bourveau and Law, 2021) by

showing how analysts learn about climate risks from experiences of weather events, however, this

knowledge does not transfer to other analysts, allowing brokerage firms to capitalize on it.

The rest of the paper is organized as follows. Section 2 provides a review of the literature.

Section 3 develops the conceptual framework and section 4 presents the methodology. Section

5 presents the data and the descriptive statistics. Section 6 discusses the results, and Section 7

concludes.
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2 Related Literature

This study contributes to three streams of literature: 1) the formation and updating of beliefs about

climate change, 2) the impact of weather events on financial markets, and 3) analysts’ behavior,

particularly in relation to climate-related information and events.

The first stream of literature focuses on how individuals form and update their beliefs about

climate change. Deryugina (2013) demonstrates that local temperature fluctuations influence in-

dividuals’ beliefs about global warming, affected by both rational and behavioral updates. In the

financial context, investors believe that only risks related to climate regulation have started to

materialize (Krueger et al., 2020) and positive information about climate transitions increase in-

vestment preferences for ‘green’ assets (Ceccarelli and Ramelli, 2024). Bauer et al. (2024) explore

how financial experts’ mental models of climate risk mispricing shape return expectations, empha-

sizing the role of cognitive biases and external events. This study extends this research by showing

how subjective beliefs influence financial forecasts and market behavior, demonstrating that these

beliefs can be elicited through means other than surveys, such as earnings forecasts.5

The second stream examines the impact of weather events on financial markets. Choi et al.

(2020) find that retail investors are more likely to sell stocks of high-carbon-footprint firms after

experiencing heatwaves. Anderson and Robinson (2019) show increased household investment in

green funds following such events, while Alekseev et al. (2021) demonstrate that mutual fund

managers alter their portfolio allocations across industries after extreme heat events.6 Although

prior studies don’t fully disentangle whether the effects are due to changes in preferences or beliefs,

this study shows how weather events affect the earnings forecasts of analysts, who play a key role

in financial markets.

The third stream focuses on analysts’ behavior, particularly in relation to climate shocks. Ev-

idence on how climate events affect analysts’ forecasts is mixed. Some studies show improved

forecast accuracy and increased dispersion for firms with specific characteristics such as low market

capitalization, low institutional ownership, less salience (Han et al., 2020), earnings sensitivity to

5Regarding ESG beliefs, which do not fully reflect climate beliefs, Giglio et al. (2024) document significant hetero-
geneity in beliefs about ESG returns, noting that these beliefs differ substantially from traditional variables used in
investment decisions.

6Similarly, Huynh and Xia (2021) demonstrates that investors overreact to firms exposed to natural hazards, leading
to a decline in the bond and stock prices of affected companies. Additionally, Alok et al. (2020) finds that managers
near such events overreact and significantly underweight stocks in disaster zones compared to distant managers.
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weather seasonality (Zhang, 2021), and location in countries with greater climate risk (Kim et al.,

2021). Conversely, other studies find limited or no impact of extreme temperature events on earn-

ings forecasts (Addoum et al., 2020, and Pankratz et al., 2023). A key difference between these

studies and my work is that while they focus on firm-specific events, I concentrate on analysts’

specific exposures.

A few prior papers examine how direct experiences of weather events affect analysts’ forecasts.

Addoum et al. (2020) report no significant effect on forecast revisions, while Bourveau and Law

(2021) show increased forecast pessimism following hurricanes but do not address forecast accuracy

or firms’ climate risks. After experiencing wildfire smoke, Israelsen and Kong (2024) demonstrated

that analysts become less accurate and ask more questions about climate risks during earnings

calls. Consistent with this study’s findings, Cuculiza et al. (2021) observed improved accuracy in

forecasting firms with high climate risks after abnormal temperatures.7 However, none of these

studies test the specific hypotheses I address here, nor are they as comprehensive in demonstrating

that analysts also rationally acquire information from experiencing climate-related events.

Overall, my findings align with prior research showing that increased access to information about

climate risks enhances analyst accuracy. This has been observed when firms disclose climate risks in

their annual reports (Wang et al., 2017), in firms with mandatory ESG disclosures (Krueger et al.,

2021), following ESG-related incidents (Derrien et al., 2021), and among firms participating in the

Carbon Disclosure Project (Chan, 2022).

3 Hypotheses Development

This study provides a methodology to extract climate beliefs by examining variations in earnings

forecasts around weather events. Analysts’ earnings forecasts can be defined as a function of their

beliefs, including climate beliefs, and all available market data.8 If the market data remains constant

and firms are not affected by the weather event, any changes in analysts’ forecasts can only be

attributed to shifts in their beliefs. Unlike studies examining how changes in investments may be

7In a recent paper, Reggiani (2022) show that analysts revise down their forecasts for high climate risks companies
after weather events.

8Formally, analysts’ forecasts can be represented as (beliefs) ∗ (market data), where analysts’ beliefs include climate
beliefs as well as beliefs about firms’ fundamentals and the economy.
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influenced by either preferences or beliefs—such as those involving mutual fund managers (Alekseev

et al., 2021), households (Anderson and Robinson, 2019), and investors (Choi et al., 2020)—this

analysis focuses solely on belief-driven changes.

I make two primary assumptions regarding how experiences of weather events influence changes

in climate beliefs. First, first-hand experiences of salient natural hazards matter for changing beliefs,

aligning with the literature that emphasizes the role of experiences in shaping expectations (as in

Malmendier and Nagel, 2011, 2016; Malmendier and Wachter, 2021). Second, weather shocks do not

directly or indirectly impact the firms. Thus, forecasted firms in the sample must be at a significant

distance from the weather event and their fundamentals remain constant around the event period.9

Why would analysts change their forecasts if the firms are unaffected by the event? My two

hypotheses are the information and behavioral hypothesis. These mechanisms are not mutually

exclusive and may operate in tandem.

3.1 Information Hypothesis

Under the information hypothesis, analysts gain valuable insights from experiencing a weather

event. I propose two conceptual frameworks to explain the information channel.

First, according to the ‘rational attention allocation’ theory proposed by Kacperczyk et al.

(2016), analysts must decide each period how much attention—whether in terms of time or cognitive

resources—to allocate to specific information or stocks. When weather events occur, the potential

payoff from focusing on the impact of climate-related events on earnings forecasts increases, leading

to a shift in attention allocation that results in improved forecast accuracy.

The model’s first prediction is selective attention: analysts are expected to enhance their skills

by concentrating on higher-risk and more opaque firms, which increases accuracy and leads to more

frequent forecasts for these companies. The second prediction posits that skilled analysts—identified

as experienced analysts, top performers, and lead analysts—are more effective at acquiring and

processing information. The model anticipates a more pronounced improvement in accuracy among

these skilled analysts, who possess an information advantage over their less skilled peers.

9Firms can be impacted indirectly by their suppliers or competitors. This is a second-order effect. In a perfectly
competitive market, a climate shock to a supplier or competitor would be insignificant. In an imperfect market,
controlling for industry-fixed effects or concentration indexes should mitigate the issue.
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Second, under the ‘attention model’ of Baker et al. (2020), being near a weather event acts

merely as an attention shock. Thus increasing uncertainty for all agents and causing inattentive

forecasters to become more attentive and update outdated forecasts.10 The primary prediction of

this theory is that the effect on forecast accuracy will be more pronounced among analysts who

were previously less attentive. In this case, the improvement in accuracy would largely stem from

the general increase in attention rather than from any understanding of firm-specific climate risks.

The main predictions for the information hypothesis are as follows: 1) analysts’ forecast accuracy

improves following the weather event, 2) this effect is more pronounced in environments with higher

information asymmetry, such as for more opaque firms or analysts with less prior information, and

3) the effect is persistent, leading to a long-lasting increase in accuracy.11

While the ‘rational attention allocation’ theory predicts an increase in accuracy for more ex-

perienced analysts and firms with high climate risks, the ‘attention shock’ hypothesis suggests an

improvement primarily among previously inattentive analysts.

3.2 Behavioral Hypothesis

Under the behavioral hypothesis, changes in forecasts are driven by emotional reactions or cognitive

biases, such as heuristics (Kahneman and Tversky, 1972) or mood effects (Dehaan et al., 2017).

Analysts’ forecast changes may stem from the traumatic impact of the weather event, which

could influence their risk-taking behavior (Bourveau and Law, 2021; Bernile et al., 2017). In

this framework, analysts might become more pessimistic about all firms (availability heuristic)

or specifically about firms with higher levels of climate risk (representativeness heuristic).12 Given

that analysts are typically over-optimistic, any reduction in optimism could potentially lead to

more accurate forecasts. However, this relationship is unclear, as similar studies have documented

behavioral effects that result in increased forecast errors (Israelsen and Kong, 2024) or no effect at

all (Addoum et al., 2020).

10In this context, the shock does not alter the data-generating process. On the contrary, in the ‘man-bites-dog’ signal
of Nimark (2014), analysts perceive greater uncertainty and treat the event as highly unusual, which could initially
lead to less accurate forecasts due to increased uncertainty and greater dispersion.

11In the ‘Other Mechanisms’ section, I discuss alternative explanations the could potentially drive an increase in
forecast accuracy.

12The representativeness heuristic suggests that an agent, after an event, tends to overestimate the probability of
representative types (Kahneman and Tversky, 1972).
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Weather-induced negative moods could make analysts more pessimistic and impair their assess-

ment abilities. For example, analysts have been found to respond more slowly and pessimistically

following adverse weather conditions (Dehaan et al., 2017), terrorist attacks (Cuculiza et al., 2020),

and sports events (Wu, 2023). The effects on analysts’ accuracy are mixed: Cuculiza et al. (2020)

report an increase, Dehaan et al. (2017) observe no change, and Wu et al. (2021) note a decline.

Since mood is unobservable, ruling out this mechanism is challenging. However, if mood effects are

present, increases in pessimism are likely to be consistent across all firms.

Overall, the main predictions for the behavioral hypothesis are: 1) analysts will exhibit shifts in

optimism or pessimism, but these shifts may not necessarily impact forecast accuracy, and 2) any

changes in optimism or pessimism are expected to dissipate after a few months. Importantly, while

analysts may become optimistic since they cover companies not directly affected by the event, severe

and costly weather events are more likely to elicit a negative response. While heuristic approaches

suggest increased pessimism for firms with high climate risks, mood effects would predict a general

increase in pessimism across all firms.

4 Empirical Strategy

In this section, I explain how I define salient weather shocks, the methodology used, the main

assumptions for the validity of my methodology, and how to test the previously discussed hypotheses.

I start by defining natural disasters as shocks with at least one of the following three criteria:

1) more than 10 fatalities; 2) more than 100 injured people; or 3) more than 1 billion dollars

in total economic damages.1314 By selecting only the largest disasters in terms of economic and

health-related damages in any state, I hope to discard seasonal and common climate events that

may not be attributed to climate change realization. A weak definition of salient event risks would

include natural disasters that are not informative for equity analysts, hence biasing the estimators

downwards.

To study the effect of salient climate shocks on analysts’ forecasts, I divide my sample of analysts

13Taylor and Thompson (1982) characterize a salient event as “a phenomenon that when one’s attention is differentially
directed to one portion of the environment rather than to others, the information contained in that portion will receive
disproportionate weighing in subsequent judgments”.

14Criteria 1 and 2 are commonly employed as standard criteria to classify weather events as natural disasters (Wirtz
et al., 2014), while the 3rd criteria is from Barrot and Sauvagnat (2016).
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into treatment and control groups. The treatment group consists of analysts located within a 100-

mile radius of a salient shock. The control group consists of analysts who issue forecasts for firms

in the same sectors as those followed by the treated analysts.

I ensure that a change in forecasts is driven by changes in beliefs by excluding all analysts

forecasting firms located 100 miles from the event. I use the location of the firm’s headquarters

as a proxy for the firm’s location, following the approach of previous studies such as Dessaint and

Matray (2017), Barrot and Sauvagnat (2016), and Alok et al. (2020).15 The analysis is conducted

at the monthly level: keeping the last forecasts in the pre-treatment months and the first forecast

in the post-treated months. By exploiting the staggered arrival of the extreme natural events at

the analysts’ location, I use the following regression:

Y i,f,h,t = β1posti,f,h,t + β2treati,f,h + β3treat ∗ posti,f,h,t + θXi,f,t−1 + γh∗s + εi,f,h,t (1)

for an analyst i, firm f , for a forecast horizon h and at month-year t. β3 is the coefficient of

interest, indicating the effect of experiencing a weather event on treated analysts after the event

compared to the control group and θXi,f,t−1 controls for analysts’ and firms’ pre-trend differences.

Fixed effects (FE) included are γh∗s which is an interaction between the shock indicator and the

forecast horizon. Since climate shocks occur within a 100-mile radius of the analyst’s office location,

standard errors are clustered by the analyst’s office location.16

Two types of dependent variables are then used to study whether analysts change their forecasts

after a weather shock. Specifically, I follow Hong and Kacperczyk (2010) and use analysts’ forecast

bias and forecast error. Forecast bias is defined as BIASift = (Fift − Aft) /Pf,t−1, where Fift is the

earnings forecast of an equity analyst i for a firm f in the month t, and Aft is the realized earnings for

a firm f at time t divided by Pf,t−1, the stock price for firm f in the previous quarter t−1. Since the

15I demonstrate that the findings remain robust even when excluding firms with an establishment location near the
event.

16Fast-growing literature highlights the problem arising by implementing a staggered differences-in-differences method-
ology (see Baker et al., 2022). When using multiple treatments over time, the estimated staggered DID coefficient
can be seen as a weighted average across shocks. The problem arises when analysts experiencing a weather shock
are compared to analysts that already received treatment in the recent past. Notice that this concern is addressed
by using a control group composed of analysts that are never been treated or are yet to be treated. Thus, analysts
are removed from the control group after experiencing a weather shock. Furthermore, I control this problem by
implementing a standard differences-in-differences analysis across shock and forecast horizons, which is captured by
the γh∗s.
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bias could be positive as well as negative, I use forecast error to explore whether the analyst becomes

more accurate (lower forecast errors). Forecast error is defined as FERRORift = |Fift−Aft|/Pf,t−1,

which differs from BIAS only by having the numerator in absolute terms.

The set of additional covariates Xi,f,t−1 included are common control variables used in previous

studies (Addoum et al., 2020, Cuculiza et al., 2020, Cuculiza et al., 2021, Hong and Kacperczyk,

2010, etc.) such as (i) days to end, the difference in days between the forecast and earnings

announcement date; (ii) broker size, how many analysts are issuing forecasts for a brokerage firm in

a year; (iii) companies followed, how many firms are forecasted by an analyst in a year; (iv) industries

followed, how many industries are forecasted by an analyst in a year; (v) general experience, the

difference in years between the first forecast issued on IBES and the analyzed forecasts; and (vi)

firm experience, the difference in years between the first forecast analysts issued for a firm j and

the analyzed forecasts. Additionally, I control for firm size (measured by total assets) and analysts’

bias and error during the pre-treatment period.

To ensure the internal validity of my econometric methodology, I check whether the parallel

assumption holds. A common test is to run a regression with pre-treatment interaction dummies

between periods and treated groups, such as:

Yi,f,h,t =
∑
j ̸=0

βjrelative monthi,f,h,t+j + βtreati

+
∑
j ̸=0

βjtreat× relative monthi,f,h,t+j + θXi,f,t−1 + γs∗h + εi,f,h,t

(2)

Where relative months is a binary variable that indicates the month when the forecasts were

issued (from -3 months to + 3 months) relative to the reference month (t = −1), and treat takes

value one for a treated analyst. The regression also includes pre-treatment controls (θXi,f,t−1)

and shock indicators interacted by forecasts’ horizon (γs∗h). The parallel assumption is satisfied if

the difference between the control and treated group needs is either not significantly different or

statistically different but constant throughout the pre-treatment months.
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5 Data and Descriptive Statistics

5.1 Data

The dataset used in the paper is based on four main databases: (i) Climate events are obtained from

the Storm Events Database (NOAA); (ii) Analyst forecasts are retrieved from IBES; (iii) analysts’

office location is found on Refinitiv and Capital-IQ; (iv) Companies information are from CRSP

and Compustat.

Weather events. The Storm Events Database is obtained from the official National Oceanic and

Atmospheric Administration (NOAA) website. It contains data on 169,570 weather episodes from

1999 to 2020, covering 50 different event types reported by various sources, such as meteorological

stations, media outlets, and call centers. When available, the dataset includes information on direct

and indirect fatalities and injuries, geographical coordinates, event timing, as well as property and

crop damages resulting from climate events. I define total fatalities and injuries as the sum of both

direct and indirect cases, and total economic damages as the sum of property and crop damages,

adjusted to real terms using 2013 as the base year.

I select salient weather events based on the following criteria: at least 10 fatalities, 100 injuries,

or $1 billion in economic damages. This results in 185 unique episodes. For 72% of these events,

precise geographical coordinates are provided. For events missing coordinates, I use the reported

FIPS code of the county where the event occurred (with FIPS code translations obtained from the

Storm Prediction Center WCM page, NOAA, 2016) and determine the centroid of the county as

the event location.17 In doing so, I determine the geographical location for 98% of the salient events

in the dataset.

Equity information. Companies’ information about their fundamentals -such as companies’

total assets, leverage, sales, and revenues- are sourced from the CRSP-Compustat quarterly database

available through WRDS. Observations with no stock price are discarded, and I exclude all firms

with an average share price lower than $5 (Hong and Kacperczyk, 2010). My primary firm sectors

17The FIPS code is a unique identifier assigned to each county by the National Institute for Standards and Technology
(NIST). These codes are obtained from Wikipedia’s “Table of United States counties” (https://en.wikipedia.
org/wiki/User:MichaelJ/Countytable).

14

https://en.wikipedia.org/wiki/User:MichaelJ /Countytable
https://en.wikipedia.org/wiki/User:MichaelJ /Countytable


are retrieved using the NAICS code, supplemented with SIC industry classifications when NAICS

codes are missing. Additionally, I discard companies with missing sector information.

To proxy for a firm’s location, I follow previous literature that utilizes the headquarters address

(for example, Alok et al., 2020 and Barrot and Sauvagnat, 2016). Headquarters information, in-

cluding city, state, and ZIP code, is obtained from Compustat Quarterly. Missing ZIP codes are

linked to their respective latitude and longitude coordinates using a comprehensive public dataset

from CivicSpace Labs opendatasoft. I keep only firms with headquarters located in the US.18

As a proxy for firms’ climate risks, I use firms’ specific forecasted climate physical and transition

risks from Trucost. For physical risks, Trucost reports the composite score of a company’s physical

risk exposure (ranging from 1-low risk to 100-high risk) as a weighted average across 8 different

physical risks (wildfire, coldwave, heatwave, hurricane, sea level rise, flood, and water stress) for

three forecasts horizons (the year 2020, 2030 and 2050) and scenarios (high, medium and low). For

my analysis, I use the composite physical risk forecasts of the year 2020 averaged across all future

scenarios (high, medium, and low). In my sample, the average (as well as median) firm composite

physical risk score is 60 points. Each physical risk averages from 3 points for flood and sea level

rise to 57 points for water stress.19

To assess transition risks, I rely on the Unpriced Carbon Cost adjusted EBITDA provided by

Trucost. This metric captures the difference between a company’s current carbon cost and projected

future costs based on industry, operations, and various pricing scenarios. Firms with high transition

risk are those in the top tercile of earnings at risk, using carbon earnings at risk for the year 2020

across multiple scenarios (high, medium, and low). The remaining companies are categorized as

non-risky. In Appendix D, I also conduct a robustness check by analyzing firms’ absolute emissions,

defining firms in the top tercile of MSCI absolute scope 1 emissions data as high-risk entities.

Lastly, to assess the information available about climate risks for each company, I use their

voluntary disclosures to the Carbon Disclosure Project (CDP) and discussions of climate risks

during earnings calls from Sautner et al. (2023).

18One issue with Compustat is that when a headquarters changes, the data is filled in retroactively. I verify that the
analysis is robust by excluding firms with misclassified headquarters information, using data from Gao et al. (2021).

19As physical risks remain relatively consistent across time and geography, my choice of using the year 2020 should
not significantly impact the results.
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Analysts forecasts. I use the Details of Institutional Brokers’ Estimate System (I/B/E/S) to

collect short-term as well as long-term earnings forecasts (EPS) by analysts located in the US from

1999 to 2020. The data are then merged with the IBES Recommendation file to obtain the analyst’s

last name, initial of the first name, and brokerage house abbreviation. To de-anonymize the broker

ID, I use the IBES Translation file.20

To obtain information on analysts’ locations, I manually downloaded analysts for a sample of

firms in Refinitiv, obtaining full names, email, brokerage names, and phone numbers. However,

Refinitiv only provides information on active analysts that are currently producing forecasts and it

does not provide any information on analysts’ office locations. Luckily, the US uses a numbering

plan area (NPA) that allows me to find the location of the analyst by exploiting analysts’ first

3-digits of their phone number.

To expand the sample, I use Capital IQ - Professional to search for professionals located in the

US and for which the profession title includes the term “Analyst” (for example, “Equity Analyst”,

“Research Analyst”, “Former Analyst”, etc.). Since the available version of Capital IQ - Professional

provides only the US state location of the analysts, to find the city of the analyst’s office location,

I assume that analysts working for the brokerage firms in a given state are located in the same city

as analysts previously found in Refinitiv. To avoid mismatch I manually check a subset of analysts,

which moved at least once in my sample, using BrokerCheck.21

Lastly, the dataset is further cleaned by: (i) including only forecasts made in U.S. dollars and for

firms matched with the Compustat data; (ii) excluding all forecasts with an absolute forecast error

(difference between the forecast and the actual earning) greater than $10 (Hong and Kacperczyk,

2010); (iii) excluding all firms that are followed by less than five analysts (Hong and Kacperczyk,

2010); (iv) winsorizing the data at 0.5% for each tail and forecast horizon; (v) excluding forecast

less than 30 days from the forecast announcement.

This leads to a final dataset of 2,894 equity analysts in 29 different US states covering 1,588,202

earnings forecasts for 5,109 firms from 2000 to 2020.

20Since the IBES Translation file was discontinued in 2018, my study focuses on brokerage houses for which I possess
the translation, assuming that IBES brokerage matches remained consistent thereafter.

21BrokerCheck is an open-source database provided by the Financial Industry Regulatory Authority (FINRA). See
https://brokercheck.finra.org/
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5.2 Descriptive Statistics

In this section, I present the descriptive statistics of analysts and weather shocks in my sample.

My analysis includes weather shocks located 100 miles from analysts who provide earnings forecasts

for firms (unaffected by the weather event) and a control group of analysts forecasting firms in the

same sector. After applying these filters, the sample under study shrinks to 1,231 analysts located

in 24 states and covering 2,770 firms from 2000 to 2020.

Analysts characteristics. Figure 1 maps the location of my sample of analysts throughout the

US (filtered by control and treated). Not surprisingly, 58% of equity analysts are located in the

state of New York, followed by 7% in California and 4% in Illinois. It is well known in the literature

that a significant portion of forecasts comes from analysts in New York; for example, Malloy (2005)

found that 56% of all analysts are based in NYC. Importantly, my results remain consistent even

when analysts from New York are excluded from the sample (see Table 15).

Table 1 reports the summary statics. The average bias for analysts is 0.75% while the average

forecast error is 1.84% (respectively with a standard deviation of 3.5 and 3.3). An analyst in my

sample follows on average 15 firms, with an average of 2 years of forecasting a single firm and

approximately 4 years overall of work experience. Moreover, the average analyst follows two sectors

and works in a brokerage firm alongside 67 other analysts. In the Appendix, Table A1 provides

summary statistics for all analysts for which I have working location, not just those filtered for the

analysis.

Weather shocks characteristics. Table 2 reports the characteristics of the salient events within

a 100-mile radius of an analyst’s location. For each type of weather event, the Table indicates the

average total number of damages (in millions $), the total number of deaths and injuries, and the

number of events. In terms of economic impact, coastal floods cause the most significant damage.

Debris flows, heatwaves, and tropical storms are associated with the highest number of fatalities,

while winter storms lead to the most injuries. The most frequent events in the sample are tornadoes

and heatwaves.22

22In the Appendix, Figure A3 displays the selected salient weather shocks that occurred near analysts’ office locations,
while Figure A2 shows all salient shocks recorded by NOAA across the U.S. from 2000 to 2020.
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Climate beliefs after a weather event. To validate that my selected weather events affect

beliefs, I follow Alekseev et al. (2021) and download Google trends about climate change in the

state where analysts are situated. By regressing state-monthly Google trends on the constructed

indicator for extreme events with state and year-fixed effects, I investigate if states with salient

weather events present more Google searchers about climate change than states with no events.23

Columns 1-3 of Table 3 report the coefficients of interest for the different types of damages caused

by the salient events. All indicators are positive, while only fatalities and economic damages are

statistically significant. Similar to Alekseev et al. (2021), experiencing any fatalities or economic

damages caused by extreme events increases relative interest in climate change by respectively 9.5%

and 8.6%. Consistently, table A2 uses data from the Yale Climate Opinion Map to show that in

states where these events occur, a larger proportion of the population believes that global warming is

happening and expresses increased concern in the following year.24 This finding aligns with trends

observed in Google search data, highlighting that selected extreme events affect climate change

beliefs.

6 Empirical Findings

This section presents the results of my analysis. I begin with the main findings, followed by an

exploration of the hypotheses behind the observed effects. I then examine potential mechanisms and

provide additional analysis of how weather events impact analysts and financial markets. Lastly, I

conclude with robustness tests to validate the results.

6.1 Main Results

My main analysis investigates how analysts located near a weather event adjust their forecasts

compared to those further away. Table 4 presents the baseline differences-in-differences (DID)

estimates for both forecast bias and error. The analysis uses analysts’ yearly forecasts at various

horizons (1 to 5 years ahead), considering only the last forecast made before the event and the first

23This analysis uses the entire sample of selected climate events, not just those near the analyst’s location, to prevent
the misclassification of month-states as non-treated, which could result in underestimated findings.

24I use state-level Yale Climate Opinion Map instead of county-level to ensure more accurate and representative results,
as larger populations provide more reliable estimates.
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forecast after the event.

The estimated coefficients indicate that, after a weather shock, first-time treated analysts become

more accurate (i.e. smaller forecast error) and less optimistic (i.e. smaller bias) compared to never-

treated analysts, while the latter is not statistically different than zero given conventional confidence

interval levels. The difference between the treated and control groups is 0.058 p.p. and 0.072 p.p.,

for bias and error respectively. Comparing the estimated results to the average bias and error in

the sample, the effects correspond to an 8% decrease in forecast bias and 4% in forecast error.25

In the Appendix, Figure A6 plots the estimated DID for each sector. It suggests an increase in

pessimism among analysts in the education, accommodation and food service, scientific, and mining

sectors, while analysts have enhanced accuracy in sectors such as scientific and wholesale. Turning

to Figure A7, specific climate events, including wildfires, surge tides, and floods, contribute to a

more pessimistic outlook. On the other hand, analysts appear to be more (less) accurate following

storm surges, heatwaves, hail, and debris flow (extreme cold and heavy snow). This highlights how

heterogeneous are analysts’ reactions to different sectors and weather-related incidents.

I test the validity of my DID by assessing whether the parallel trend assumption holds. Figure

2 plots the estimated coefficients of pre and post-period interaction terms between treatment, near

a weather event, and month indicators for both forecast error and forecast bias, using the month

before the event (t = −1) as the reference month. The figures corroborate the findings that the

forecast bias and error of control and treated groups are not statistically different in pre-treatment

periods.26

To ensure that changes in analysts’ forecast bias and error are attributed to changes in their

climate beliefs, I verify that forecasted firm fundamentals remain stable between one quarter before

and the quarter of the event. Figure 3 illustrates that, aside from a small statistically significant

increase in Capex, there is no significant statistical variation in firm fundamentals surrounding the

event. In the Appendix, Figure A4 shows that this also applies when compared to one quarter after

25In the Appendix, Table A3 presents the results using analyst*firm fixed effects, year*firm fixed effects, and year*state
fixed effects. When both year*firm and year*state fixed effects are introduced, the effect on forecast error becomes
small and statistically insignificant. To confirm the robustness of these findings, Table A4 presents the results for
1-year horizon forecasts, these results remain invariant to the introduction of FE reassuring the robustness of the
baseline results.

26Figure 2 fills in missing data for analysts during the pre-treatment period if they did not issue forecasts in a given
month. In the Appendix, Figure A5 focuses on analysts who issued at least one forecast in each pre-treatment month,
confirming that the parallel trend remains robust.
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the event.

The baseline results aggregate analysts’ forecasts across all horizons (1 to 5 years ahead). Since

climate risks impact both short- and long-term expectations, I analyze whether analysts perceive

these risks as threats to firms’ short- and long-term earnings. Table 5 reports the estimated coef-

ficients for each forecast horizon separately, with 5-year forecasts excluded due to data limitations.

The table shows that the reduction in forecast error following a weather shock is primarily driven

by 1-year-ahead forecasts.

For longer horizons, the results are mixed. For the 4-year horizon, analysts exhibit increased op-

timism, which leads to decreased accuracy. In contrast, long-term growth (LTG) estimates decrease

after the event. This is surprising since LTG typically reflects expectations for three- to five-year

growth, which should be consistent with the 4-year horizon.

These findings, indicating that analysts primarily revise short-term forecasts, align with analysts’

tendency to focus on shorter horizons that are more susceptible to updates based on new information

(Décaire and Graham, 2024). However, they raise important questions about how analysts’ beliefs

regarding climate risks affect their long-term outlook. Specifically, do analysts believe that firms

may adapt to climate risks (resulting in no change in their expectation), benefit from climate risks

(leading to a positive outlook), or be negatively impacted? This opens up avenues for further

research.

6.2 Behavioral Versus Information

The study aims to disentangle whether changes in forecasts are driven by analysts’ emotional

responses or information acquisition. To do so, I exploit the type of shock experienced by the

analysts, the amount of information available about the companies they forecast, and the duration

of their forecast revisions.

Shocks’ characteristics. I leverage company-level data on specific climate-related physical risks

to examine whether analysts who experience a particular climate event revise their forecasts for

companies exposed to the same risks.

I focus on heatwaves for two main reasons. First, from a data perspective, heatwaves occur more

frequently, resulting in a larger number of analysts located near these events, as well as more firms
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exposed to heatwave risk. Second, extensive literature highlights the costly impact of heatwaves

on companies, affecting their operating performance (Pankratz and Schiller, 2021) and leading to

lost sales (Barrot and Sauvagnat, 2016; Hugon and Law, 2019, Custodio et al., 2021), as well as

influencing climate-related beliefs (Choi et al., 2020; Anderson and Robinson, 2019; Alekseev et al.,

2021).

Table 6 presents findings for firms categorized into high (above-median) and low heatwave risk,

comparing analysts who experienced a heatwave to those who did not. I focus on the 1-year-ahead

horizon due to the smaller sample size for longer forecasts; however, results for all forecast horizons

are provided in Appendix Table A5. The first two columns replicate the baseline results, reflecting

consistent patterns despite the smaller sample size. Columns 3 and 4 demonstrate that analysts

improve their forecast accuracy specifically for firms with high physical risks following a heatwave,

while no significant effects are observed for firms with different risk profiles (columns 5 and 6). This

suggests that analysts are gaining valuable insights related to heatwave risk.

In the Appendix, I also explores transition risks due to the interconnected nature with physical

climate risks. For example, lenient carbon regulations could lead to more extreme weather events in

the future. To understand how analysts revise their forecasts for companies with different climate

risks, I categorize firms as having high (above-median) or low composite physical risks, and high

(top tercile) or low transition risks, using Trucost’s carbon earnings at risk weighted by EBITDA.

Table A6 shows that analysts become more pessimistic and accurate for firms with high physical

and transition risks, but overly optimistic and less accurate for firms with high physical risks and

low transition risks. The differences in analysts’ responses highlight the complexity of predicting

corporate performance in the face of climate risks, suggesting that analysts may believe stricter

regulations will be implemented in the future. This expectation translates into analysts being more

optimistic about companies with low transition risks. 27

Asymmetric information. If analysts gain new information from a weather event, this should

be reflected in greater forecasting ability, particularly in situations of high information asymmetry

where acquiring information is costly.

To test this hypothesis, I use several proxies for asymmetric information: i) companies’ climate

27Table A7 corroborates that analysts, by focusing solely on transition risks, are more pessimistic and accurate for
high-transition risk firms but more optimistic and less accurate for low-risk firms.
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risk disclosure through the Carbon Disclosure Project (CDP), ii) companies operating in climate-

sensitive sectors, iii) companies covered by many analysts, iv) analysts located in high climate-risk

states, and v) companies discussing climate risks during earnings calls.

I start by collecting data on companies that voluntarily disclose climate-related information to

the CDP, identifying 276 companies in my sample with such disclosures. Additionally, I categorize

firms into high and low climate-sensitive sectors based on the IPCC classifications used in Choi et al.

(2020). The rationale is that companies disclosing their climate risks, or operating in more climate-

sensitive sectors, are likely to have more information about climate risks, both at the company and

sector level.

Next, I identify states with higher climate risks, defined as those experiencing more than four

large events, which is above the median in my dataset for the entire period. The assumption is that

analysts in states with fewer climate events have less exposure to climate risk information. Finally,

I calculate the number of analysts following each company, as greater analyst coverage is associated

with increased competition and reduced forecast bias (Hong and Kacperczyk, 2010). Companies

in the top quartile of analyst coverage are classified as having high coverage, while all others are

categorized as having low coverage.

Panel A of Table 7 presents the results for firms broken down by CDP disclosure and climate

risk of the sector. The estimated coefficients indicate that analysts become more accurate for firms

without CDP disclosure. Interestingly, analysts become more pessimistic but not more accurate for

firms with CDP disclosure. When looking at the sector’s climate risk, the effect is only on accuracy,

and it is twice as large for companies in low climate-risk sectors.28

Panel B shows that firms covered by fewer analysts experience a stronger effect on the accuracy

of analysts’ forecasts. Additionally, analysts in low-risk states become five times more accurate.

These results suggest that analysts benefit from exposure to weather events by acquiring information

in areas that are typically more opaque and have a lower flow of information.

I then examine companies that discussed climate change exposure during their earnings calls

in the previous year (using data from the four quarters prior), as well as those that did not have

such discussions or lack data. If there was any discussion of climate change exposure in any of the

28Another proxy of uncertainty is analysts’ forecast dispersion. Table A8 reports the results for firms divided based
on the previous year’s quartiles of dispersion into high (top quartile) or low dispersion (all others). Consistent with
the main results, analysts become more pessimistic and accurate for firms with higher dispersion.
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previous year’s earnings calls, the indicator is set to one. The data is sourced from Sautner et al.

(2023), which created scores based on whether climate change exposure was discussed (exposure),

whether the discussion related to uncertainty and risk (risk), whether it was positive or negative,

and whether it pertained to physical and transition risks.

Figure 4 shows no significant effect on either relative pessimism or accuracy when climate change

is discussed or not discussed during an earnings call. This suggests that analysts may have already

incorporated climate risks into their forecasts, so the weather events provide no additional informa-

tion. Interestingly, for companies without available earnings call information—whether due to data

unavailability or because the company did not conduct the call—I find that analysts become more

accurate in their forecasts, without a corresponding change in forecast bias. While these results

should be interpreted cautiously due to potential measurement errors, they support the hypothesis

of asymmetric information, indicating that analysts improve their accuracy for companies lacking

prior information.

Persistence. Lastly, if weather events convey no information on climate risks, equity analysts’

forecasts should eventually revert to their fundamental values. However, empirically testing this

hypothesis is challenging as it requires assuming no additional information about climate risks is

released after the event. Despite these limitations, I explore whether analysts adjust their forecasts

back to previous levels following the weather event.

I analyze changes in forecast bias and error at 4, 6, 12, and 18 months after the event, relative to

the last forecast issued before the event for treated analysts. I focus on 1-year forecast horizons, as

this horizon primarily drives the main results.29 Figure 5 shows that analysts maintain an accurate

stance up to 18 months post-event for 1-year-ahead forecasts, though the results are not statistically

significant at 6 and 12 months.

Overall, the results suggest that analysts gain valuable information from experiencing the event,

as evidenced by improved accuracy for high-risk firms and regions with more asymmetric informa-

tion. Furthermore, this effect appears to persist over time. Collectively, these shifts in analysts’

beliefs support the information hypothesis.

29Appendix A9 provides results for all forecast horizons, but these results are not statistically different than zero. This
is not surprising since table 5 indicates that there is no effect for longer horizons and analysts are more inaccurate
for 4 years ahead forecasts.
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6.3 Mechanisms

To provide a more nuanced understanding of the information hypothesis, I propose two theories

explaining why analysts become more accurate after weather events. First, these events might act

as attention shocks, prompting inattentive analysts to revise their forecasts (Baker et al., 2020).

Second, weather events could lead analysts to focus on more valuable information (Kacperczyk

et al., 2016; Loh and Stulz, 2011). According to the first theory, inattentive analysts should present

the largest forecasting improvements, while the second theory suggests skilled analysts, who can

better adapt and refocus, benefit most.

To test these hypotheses, I begin by defining inattentive analysts. I calculate an attention score

based on the number of forecasts an analyst issues in a year relative to the number of companies

they cover, using data from the year before the weather shock. Analysts with a score of 10 or

higher are considered attentive, while those with lower scores are classified as inattentive. In my

difference-in-differences (DID) sample, there are 318 attentive and 865 inattentive analysts.

Defining skilled analysts is more challenging, as I lack access to All-Star analyst data.30 Instead,

I define skilled analysts as those with more years of industry experience, arguing they are better

equipped to extract information about future climate-related costs from weather events. I also show

that the results are robust to alternative definitions of skill, such as forecast timeliness (Cooper et al.,

2001), presented in Table A10, and performance, calculated based on forecast errors (Hong et al.,

2000), shown in Table A11.31

Table 8 presents results for analysts categorized by attention and experience, reporting findings

for both 1-year (Panel A) and all horizons (Panel B). For 1-year forecasts, both attentive and

inattentive analysts become more accurate, but high-experience analysts show more than double

the increase in accuracy compared to low-experience. Across all horizons (Panel B), attentive

analysts do not exhibit increased accuracy, as their optimism for long-term forecasts leads to a

decrease in forecast errors that masks the increase in errors for short-term horizons. However,

high-experience analysts continue to show an increase in their accuracy.

Overall, the findings support the rational attention allocation theory (Kacperczyk et al., 2016).

30All-Star analysts are those recognized as top performers in an annual contest of financial analysts conducted by The
Wall Street Journal in the United States.

31The tables report results at both firm and sector levels. Only sector-level findings are consistent with the main
results, highlighting the importance of sector-specific experience.
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When weather events occur, analysts are incentivized to focus on climate-related impacts on earnings

forecasts, leading to improved accuracy, particularly among experienced analysts who leverage their

information advantage.

6.4 Other Mechanisms

This section discusses other potential mechanisms, such as geographical distance (Malloy, 2005),

distraction (Han et al., 2020; Liu et al., 2022), effort (Glode, 2011), learning about one’s abilities

(Anagol et al., 2021), and reduced conflicts of interest (Michaely and Womack, 1999).32

Geographical distance. In a seminal paper by Malloy (2005), the author shows that analysts

with closer geographical proximity to the companies have greater information flow. By design, my

study defines treated analysts as those who are near the weather event, yet the event itself is far from

the forecasted companies, thus making these analysts inherently distant from the companies. This

could imply that the treated analysts had a higher level of information asymmetry to begin with.

However, it is challenging to differentiate whether the control group did not update their forecasts

because they already had this information about the forecasted firm (due to their proximity to

firms) or because they did not experience the event (i.e., they did not acquire new information).

If my results are driven by geographical distance the effect is expected to be significantly larger

for analysts who are further from the companies, given the larger information asymmetry. To do

so, I divide my sample into analysts near the companies (i.e., equal to or below 751 miles, which is

the median distance from analysts to firms in my sample) and analysts distant from the companies

(i.e., above the median). Table A12 indicates that the observed results are from analysts closer to

firms, which is not consistent with the geographical distance hypothesis.

Distraction. Large weather events could potentially distract analysts, leading to increased fore-

cast errors following the event (Han et al., 2020; Liu et al., 2022). However, the observed increase

in accuracy does not support this hypothesis.

32Since I do not observe a specific increase in pessimism, the effect is unlikely to be driven by mood effects (Dehaan
et al., 2017). However, the rise in pessimism for firms with CDP disclosures may suggest a heuristic effect (Kahneman
and Tversky, 1972).
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Effort. An alternative explanation is that analysts may concentrate their attention on companies

critical to their professional careers (Glode, 2011), such as firms with high institutional ownership

and large market capitalizations within their portfolios. Table 9 shows no statistically significant

results for both high and low institutional ownership firms; however, analysts do demonstrate

increased accuracy for high market capitalization companies. Suggesting that there may be an

increase in effort following the event.

Less conflict of interest. The greater uncertainty caused by weather events may lessen the

impact of conflicts of interest, which often pressure analysts to issue overly positive forecasts for

firms with close ties to their brokerage firms. This reduction in optimism leads to more accurate

forecasts, particularly for analysts at larger brokerage firms (Michaely and Womack, 1999). The

results in Table 9 show that the observed increased in accuracy is among analysts at large brokerage

firms, suggesting a decrease in conflict of interest. However, it is also possible that larger brokerage

firms, with their greater resources and infrastructure, are better equipped to manage the disruptions

caused by extreme weather, allowing analysts to focus more effectively on their forecasts.

Learning about one’s abilities. Analysts might interpret experienced weather events as signals

regarding their forecasting abilities rather than just learning about climate risks (Anagol et al.,

2021). According to this model, analysts would become more responsive to future signals as a

result. While my primary analysis focuses on analysts experiencing weather events for the first

time, I also examine analysts who encounter between 2 and 8 shocks throughout their careers. As

a control group, I use two types of analysts: those who have never experienced a shock and those

who have experienced one less shock than the treated analysts.

Figure 6 illustrates the effects on analysts’ bias (a) and error (b). The results for bias are mixed:

no significant change is observed after the second shock, but pessimism decreases after the third and

fourth shocks, with inconsistent results beyond that. Regarding forecast error, analysts generally

become less accurate with subsequent shocks. These findings suggest a potential behavioral effect

aligned with ‘learning about their forecasting abilities’. Nonetheless, the results also highlight the

importance of the baseline results, showing that only initial experiences with weather events lead

to increased accuracy, while subsequent shocks do not have a similar impact.

26



6.5 Additional Analysis

In addition to updating their forecasts, analysts provide stock price targets and recommendations,

exercise discretion in selecting which firms to cover, and decide on the questions they pose during

earnings calls. In this section, I also investigate whether analysts with prior experience of weather

events demonstrate greater accuracy in forecasting the performance of firms affected by such events.

Forecasting stock prices is more complex than forecasting earnings due to the need to predict

long-term payout ratios and appropriate discount rates (Stotz and von Nitzsch, 2005). Recommen-

dations, meanwhile, tend to be overly optimistic and less volatile than earnings forecasts (Michaely

and Womack, 2005), partly due to pressure from investment banks for more favorable recommen-

dations (Malmendier and Shanthikumar, 2014). Despite these challenges, Table A13 shows that

analysts after experiencing a weather event exhibit a statistically significant 7% reduction in target

price forecast errors. In contrast, Table A14 reveals no significant change in analysts’ recommen-

dations following weather events.33

Next, I examine whether analysts with prior weather event experience demonstrate enhanced

forecasting abilities when assessing the impact of such events on firms. For this analysis, I categorize

analysts into two groups: those who have previously experienced a weather shock (treated) and those

who have never experienced or have yet to encounter a weather shock (control), focusing on firms

directly affected by weather events (within a 100 miles radius from the event).

Table 10 shows that analysts with weather event experience become more optimistic and accurate

in their firm-level forecasts post-event (columns 1-2). This effect is particularly pronounced for firms

with high physical risk and those in climate-sensitive sectors (columns 3-4). These findings suggest

that firsthand weather event experience helps analysts acquire valuable insights, improving their

ability to forecast the impact on companies.

Lastly, I examine whether analysts with previous experience of weather events differ in the

types of firms they cover and the questions they ask during earnings calls. In this analysis, the

main independent variable takes a value of 1 if the analyst has experienced a weather event and 0

otherwise. Since this analysis does not employ the DID methodology, I include both analyst and

quarter-year fixed effects to control for unobserved heterogeneity across analysts and time.34

33For a detailed explanation of the data construction process, please refer to Section F in the Appendix.
34Since I am using analysts with more than one climate event experience, the number of analysts is greater than in
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I construct a variable that, for each quarter, calculates the number of firms an analyst covers

and the proportion of those firms facing high physical, transition, and climate risks. Additionally, I

sourced earnings call transcripts from 2006 to 2018 using WRDS and matched them to my sample

of analysts, identifying 1,398 analysts who had asked at least one question during that period. I

then define climate-related questions if they contain any unigrams and bigrams from Sautner et al.

(2023). My main dependent variables are the number of firms they cover and the questions an

analyst asks about physical, regulatory, and opportunity risks within a given quarter.35

Table 11 shows that analysts with weather event experience tend to cover more firms but these

firms have on average lower climate risks. Table 12 reveals that analysts with weather event experi-

ence are more likely to ask questions about physical risks, aligning with Israelsen and Kong (2024),

who found that analysts exposed to wildfire smoke are more inclined to discuss climate-related

issues. No significant effects were observed for transition or opportunity risks.

Overall, these results indicate that analysts are becoming more conscious of climate risks, as

evidenced by their increased focus on climate-related questions and a shift away from covering high

climate-risk firms.

6.6 Aggregate Market Effect

In this section, I investigate whether the increased accuracy of analysts near the event spills over to

other financial players, such as distant analysts forecasting the same firms as the treated analysts,

brokerage firms employing these analysts, and investors trading the forecasted companies.

Spillover to distant analysts. I examine whether an increase in forecast accuracy by analysts

directly affected by a weather event impacts other analysts who forecast the same firm but are

geographically distant from the event. In this analysis, the treated group includes distant analysts

(i.e. with no experience of the weather event) who forecast the same firm as an analyst who is near

the weather event. The control group consists of distant analysts who forecast firms that have no

analysts located near the event. As in the baseline setting, all firms considered remain distant from

the baseline analysis.
35The complete list of bigrams is not publicly available, I used the top 100 bigrams from “Table IA.IX: Top Bi-
grams for Topic-Based Climate Change Exposure Measures” in Sautner et al. (2023), removing deceptive terms and
supplementing with additional unigrams and bigrams. See Table A24 for the full list.
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the event itself.

To ensure comparability, I retain only firms that, around each event, are in the same sector and

forecasted over the same horizon. I then apply propensity score matching based on firm charac-

teristics such as analyst coverage, sales, size, leverage, operating income, ROA, stock price, and

market value. The dependent variables in this analysis are forecast bias, forecast error, consensus

(average forecast), and dispersion (standard deviation of forecasts) across distant analysts for each

company in a given month. The regression controls include company coverage, size, leverage, sales,

and operating income, with fixed effects applied at the shock, forecast horizon, and firm sector

levels. Standard errors are clustered at the firm state level to ensure robustness.

Table 13 shows that distant analysts, who forecast the same firms as those impacted by a

weather event, exhibit reduced forecast dispersion and increased pessimism, but there is no overall

effect on forecast accuracy. This suggests that while distant analysts become more pessimistic,

this translates into both better and worse forecast errors for different individuals, resulting in no

significant aggregate effect on their accuracy. Thus confirming that such events are highly salient,

affecting all analysts, even those distant from the event. However, analysts who do not experience

the event firsthand do not gain indirect insights from treated analysts, resulting in no improvement

in their forecast errors.36

Brokerage effect. To investigate whether brokerage firms recognize and capitalize on the in-

creased forecast accuracy of treated analysts, I ideally would compare brokerage firms located near

weather events to those that are distant. However, due to the limited sample of geographically

localized analysts, it is challenging to pinpoint the exact locations of large brokerage firms. As

a result, this analysis is conducted at the aggregate brokerage level, assessing the average impact

across brokerage firms with multiple locations across the US.

For each brokerage firm, I calculate the total number of analysts employed, the number of firms

they forecast within a given year, the number of firms located near weather events, and the number

of analysts situated near such events. It is important to note that the measure of treated analysts

may contain measurement errors due to my limited sample size. Standard errors are clustered at the

36Table A15 investigates whether distant analysts learn from skilled analysts with weather event experience. For
performance and timeliness-based analysts, the results confirm no effect on accuracy but show increased pessimism
and reduced dispersion among distant analysts. However, when examining experienced analysts, distant analysts
become less accurate, a result that requires further investigation.
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brokerage level, and the analysis includes brokerage and year-fixed effects to account for unobserved

heterogeneity.

Table 14 presents regressions of the number of forecasted firms, treated firms, and treated

analysts in the previous year on the number of analysts in the following year. As expected, the

more firms forecasted, the more analysts are employed in the next period. Interestingly, Column 2

shows that the number of treated analysts is also associated with hiring more analysts. Columns

3-4 and 5-6 further break down the results by large versus small brokerages (i.e. with more or less

than 13 analysts). The findings suggest that large brokerages drive this effect, as they tend to hire

more analysts. In contrast, smaller brokerages see a reduction in the number of analysts for firms

forecasted near the event.

In the Appendix, Table A16 investigates the types of firms these brokerages are more likely to

follow. This analysis keeps track of each firm followed by a brokerage house annually and uses a

linear probability model to examine if having more analysts or firms exposed to weather events

predicts the types of firms they follow. The table shows that large brokerage firms are more likely

to follow firms with high transition risks, especially when they have more treated analysts. These

results are robust to the inclusion of brokerage house fixed effects.

Stock Price Reaction. To assess the economic impact of my findings and the informative value

of analysts’ revisions, I examine the effect of post-event analyst revisions on firms’ stock prices.

Following Malloy (2005), I compare stock price changes resulting from revisions by analysts near

the weather events to those by distant analysts after such events (see Appendix F for details). I

focus on revisions indicating “good” or “bad” news, defined as news revisions are higher (lower)

than previous forecasts and consensus.

Table A17 presents the impact of forecast revisions by treated analysts compared to control

analysts on stock returns over various time windows around the weather event. The first column

shows that, overall, there is no significant difference in stock returns following forecast revisions

by treated analysts compared to control analysts. However, when distinguishing between positive

and negative signals, a clear pattern emerges: within one day of the forecast revision, returns are

lower following positive news and higher following negative news. This asymmetric market reaction

suggests that positive signals elicit a muted response, while negative signals provoke a stronger
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reaction.

For firms with high climate risks, a delayed market reaction is observed. Specifically, positive

revisions for high-risk firms lead to higher returns after one and two months, indicating that the

market eventually incorporates positive information, albeit with a lag. Likewise, negative revisions

lead to lower returns after two months, reflecting a slow market adjustment to pessimistic outlooks

for these firms. In contrast, no effect is found for low-risk firms, implying that the market either

more efficiently prices in information for these firms or is less responsive to revisions for firms with

lower exposure to climate risks.

These findings highlight that while the market reacts to forecast revisions, the full incorporation

of this information—particularly for high-risk firms—takes time. However, it is difficult to defini-

tively attribute these delayed reactions solely to treated analysts’ revisions of their forecasts. Other

factors may also contribute to the observed patterns, complicating the interpretation of whether

the market’s response is primarily driven by analysts’ adjustments following such events.

6.7 Robustness Tests

A series of robustness checks are conducted to test the validity of the results.

Analysts’ location. I start by showing that the findings are not driven by analysts located in

New York and California, where most of my analysts are located. Table 15 shows that the findings

remain robust when excluding analysts from these states. Then, I examine the robustness of the

results by controlling for different analyst distances from the event. Table 16 shows that analysts

within a 50-mile radius of the event exhibit a larger impact on bias and error, with a decrease of 13

and 23 percentage points, respectively. In the 100-200 mile range, the effect on bias is even larger

in magnitude but not statistically significant, and beyond 200 miles, there is no effect.

Firms’ location. One major limitation of this study is the reliance on firms’ headquarters as the

firms’ location. This is problematic since firms often have multiple locations, thus there is a risk

of incorrectly assuming that a firm was not affected when it was. However, this concern is partly

addressed by ensuring that the fundamentals of the firms remain unchanged during the events.

To address this limitation, I utilize the National Establishment Time-Series (NETS) Database
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to incorporate information about the establishments of U.S. firms, including their corresponding

coordinates. Among the firms in my baseline analysis, I successfully link 899 firms to their respective

establishment locations.

In columns 1 and 2 of Table 17, I observe that analysts become more accurate for firms with

establishments located more than 100 miles from the event. Columns 3 and 4 confirm that there

are no statistically significant results for firms with establishments within 100 miles of the event’s

location. Lastly, in columns 5 and 6, I replicate the baseline analysis by excluding firms that are

identified in the NETS database as being near the event’s location. This re-examination of my

primary findings further supports the baseline results.37

Analysts’ social connection. I explore whether the analysis may be subject to downward bias

due to potential communication between treated and control analysts. To assess the impact of

social connections, I use the Social Connectedness Index (SCI) obtained from Bailey et al. (2018),

which represents the relative probability of a Facebook friendship connection between individuals

in two locations. I then repeat the analysis by considering only those control and treated analysts

in counties that are socially connected (i.e., the top decile of the SCI index for the treated analysts’

county) and not socially connected (i.e., all the others). Table A18 shows that the results are driven

by socially connected counties, indicating that this effect could potentially be a lower bound.

Mean-reversion. To rule out the possibility that the observed effect is due to mean reversion, I

perform a placebo test by randomly generating weather event dates at the locations where actual

weather events occurred.38 Figure A8 shows the estimated effects on forecast bias and error, with

mixed results and only one of 30 events being statistically significant at a 5% significant level. This

suggests that the study’s findings are not driven by mean reversion.

37In the Appendix, section E shows that the results seem to be driven by companies with business locations in the same
state as the shock. While this could be problematic, it also suggests that analysts can gather some information from
the event about the firm’s business operations, even if these events do not directly affect the companies’ fundamentals.

38The results remain consistent when generating 51 random dates at 51 different locations across the US.
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7 Conclusion

This study enhances our understanding of how weather shocks influence beliefs about climate risks.

It demonstrates that analysts adjust their forecasts following significant weather events, resulting

in increased accuracy.

The evidence suggests that analysts gain valuable insights into climate change costs through

their experiences with weather events. They become more accurate in predicting earnings for high

climate risk firms and when facing higher asymmetric information. Notably, skilled analysts—those

with higher experience, performance, and timeliness forecasts—exhibit the greatest improvements

in accuracy, aligning with the rational allocation theory.

Additionally, I find that analysts also improve their accuracy for stock price forecasts and they

ask more climate-related questions during earnings calls. However, investors do not react to these

forecast revisions, and improvements in forecast accuracy do not seem to spill over to other analysts

who are geographically distant from the event. Furthermore, large brokerage firms capitalize on

this increased accuracy by hiring more analysts and following more companies with high climate

risks.

Overall, the results indicate that improved disclosure should be accompanied by policy efforts

to incentivize training and education programs for analysts. These measures will help ensure that

climate-related risks are accurately incorporated into forecasts, ultimately enhancing climate risk

awareness and responsiveness within the financial industry.
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Figure

Figure 1: Analysts’ location from 1999 to 2020 by state

Note: The graph maps the sample of matched IBES analysts’ locations to weather shock from 1999 to 2020 by US

state. The state of New York has the highest number of analysts with 734 individuals, followed by 162 in California,

54 in Minnesota, and 53 in Illinois.
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Figure 2: Parallel trend
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The figures plot the estimated coefficients for the pre- and post-period interactions between treatment and the time
variable, with 99%, 95%, and 90% confidence intervals. The omitted month is the one immediately preceding the
weather event. The specification includes all covariates, with the shock interacted with horizon fixed effects. The
event window spans 3 months before and 3 months after the event. The figure shows forecasts for all analysts in
the sample; if an analyst did not issue a forecast in months -3 or -2, their data is filled backward. In the Appendix,
Figure A5 presents results for analysts who issued at least one forecast in each month before the event, showing
robust findings. Standard errors are clustered by the analysts’ office location.
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Figure 3: Changes in firms’ fundamentals around the weather shock

Note: the graph illustrates differences in firms’ fundamentals for firms forecasted by analysts before and after a
weather event. The independent variable is an indicator that takes the value of one after the weather event and zero
before. We selected the first available data for the forecasted firm one quarter before and the quarter of the weather
shock. Sales, revenue, and working capital are scaled by 1000 to ensure compatibility and ease of comparison. The
table includes fixed effects for the weather event. To ensure that any effect of the shock is incorporated, figure A4
shows the results using only fundamentals announced one quarter after the weather shock quarter.
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Figure 4: Effect on analysts forecast by previous year firms’ climate risks exposure

(a) Forecast Bias
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(b) Forecast Error
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The figure plots the estimated effect size for firms without exposure to climate change (green), firms with exposure
(red) and firms with no information (blue). Climate change exposure is estimated using earnings call transcripts
from the previous year by Sautner et al. (2023). Note that the difference between “no information” and “without
exposure” is that the former refers to companies with no estimated score due to a lack of data or an earnings call
conducted by the company. The effect size is computed by running the baseline DID regression separately for firms
in each group. For each bigram score constructed by Sautner et al. (2023), I create a binary variable indicating
whether there was a non-zero mention in any earnings call in the previous year. Exposure refers to any mention
of climate-related words, while Risk is defined as a climate-related word appearing in the same sentence as the
words risk or uncertainty. Positive and Negative depend on whether the climate-related word was near a positive or
negative tone word. Transition and Physical risk represent specific bigrams associated with these specific risks. The
confidence intervals are at a 5% significant level.
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Figure 5: Persistence of the effect after the event
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Note: figures plot the estimated coefficients from the staggered difference in difference in bar plots with 99%, 95%,
and 90% confidence intervals for error (red) and bias (blue) for 1-year ahead horizon (FY1). The specification
includes all covariates and forecasted horizon*weather shock fixed effect. The analysis keeps only one forecast before
and after the event. The standard errors are clustered at the analyst’s office location. In the appendix, figure A9
plots for all horizons.
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Figure 6: Multiple experiences of weather events

(a) Forecast Bias
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(b) Forecast Error
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Note: figures plot the estimated coefficients from the staggered difference in difference in bar plots with 95% confi-
dence intervals for forecast bias (top graph) and error (bottom graph). The treated group is composed of analysts
experiencing more than one weather event, while the control group is either analysts with no experience of weather
events (blue) or one less experience compared to the treated group (red). The specification includes all covariates
and forecasted horizon*weather shock fixed effect. The analysis keeps only one forecast before and after the event.
The standard errors are clustered at the analyst’s office location.
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Tables

Table 1: Summary statistics for the staggered DID

Mean p50 SD Min Max
forecast bias (%) 0.75 0.06 3.53 -29.90 60.38
forecast error (%) 1.84 0.66 3.33 0.00 60.38
companies followed 14.57 14.00 6.44 1.00 47.00
firm experience 1.98 1.00 2.26 0.00 19.00
general experience 4.27 3.00 3.85 0.00 19.00
Industries followed 1.79 1.00 1.10 1.00 11.00
brokerage size 67.01 51.00 52.96 1.00 284.00
firm size 7.61 7.58 1.79 1.43 14.72
leverage 0.19 0.15 0.21 0.00 3.95
market value 2.01 1.45 2.02 0.02 45.48
stock price 39.43 28.31 45.80 0.62 2027.09
ROA 0.00 0.01 0.08 -3.98 0.67

N 57586

Note: The table reports the summary statistics used in the analysis. Forecast bias is defined as the difference between
the earnings forecast of an equity analyst i for a firm f in the month t minus the actual earnings divided by the
stock price for a firm f in the previous fiscal year t− 1, while forecast error differs from forecast bias only by having
the numerator in absolute terms. Both are expressed in percentages. See tables 19 and 20 for a description of the
variables used.

Table 2: Description merged salient storm event

Event Type Av. Total Damage (Mil. $) Av. Total Deaths Av. Total injuries Number of Events
Extreme Cold/Wind Chill 0 10 0 1

Thunderstorm Wind 0 1 100 1
Winter Weather 0 1 200 1
Heavy Snow 0.80 0 100 1

Heat 45.94 11 54 10
Tornado 76.31 7 120 7

Tropical Storm 109.20 11 77 2
Debris Flow 289.37 18 89 2

Storm Surge/Tide 1082.22 0 0 1
Flood 1155.12 0 0 2
Wildfire 1391.57 4 45 1

Hurricane (Typhoon) 1850.46 1 10 3
Hail 2185.69 0 0 1

Flash Flood 3850.36 7 0 2
Coastal Flood 5073.30 1 0 1

Note: The table reports the selected salient weather events that are 100 miles from an analyst location. The table
shows the average economic damages caused by each type of shock (converted in 2013 USD), the average number of
related deaths and injuries, and the respective number of shocks across the dataset. Given our empirical strategy
filters (i.e. only forecasts for firms 100 miles distant from the event, the control group composed of never-treated
analysts, and the treated group composed of analysts treated only once), only a small number of shocks are selected.
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Table 3: Climate beliefs after a weather shock

Google Search of “Climate Change”

(1) (2) (3)

Fatalities 0.0955*
(0.0496)

Injuries 0.00942
(0.0868)

1 bil. $ damages 0.0860**
(0.0327)

Year FE Yes Yes Yes
State FE Yes Yes Yes
R2 0.825 0.825 0.825
N 5028 5028 5028

Note: I use the Alekseev et al. (2021) methodology to estimate the log scaled Google search interest of the topic
“climate change” in the states where analysts are located. The standard errors are clustered at the month and state
level, and observations are weighted by each state’s population size.

Table 4: Baseline

(1) (2) (3) (4)
Bias Error Bias Error

post 0.00861 -0.0350** 0.00858 -0.0350**
(0.0331) (0.0144) (0.0330) (0.0144)

treat -0.159 -0.0760 -0.102 0.0501
(0.164) (0.0814) (0.144) (0.0769)

treat*post -0.0587 -0.0721** -0.0587 -0.0721**
(0.0660) (0.0274) (0.0658) (0.0274)

Controls No No Yes Yes
Shock*horizon FE Yes Yes Yes Yes
R2 0.0720 0.113 0.264 0.309
N 57586 57586 57576 57576

Note: the table shows the baseline staggered difference-in-differences (DID) for 1 to 5 years EPS forecasts of an
analyst i forecasting a firm f . The weather shock indicator and the horizon fixed effect are incorporated to account
for shock and horizon-specific characteristics. The controls used are forecast days gap, broker size, companies
followed, firms experience, industries followed, and firm size. The regression also controls for bias and error from the
pre-treatment period. The dependent variables are multiplied by 100 for interpretability purposes. The standard
errors are clustered at the office location.
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Table 5: Forecast horizons decomposition

Forecast Bias Forecast Error LTG

(1) (2) (3) (4) (1) (2) (3) (4) (1)
1-Year 2-Year 3-Year 4-Year 1-Year 2-Year 3-Year 4-Year LTG

treat*post -0.0598 -0.0904 -0.0283 0.299 -0.153*** -0.0376 0.0465 1.530** -0.877***
(0.0568) (0.0964) (0.140) (0.438) (0.0330) (0.0242) (0.0780) (0.533) (0.290)

Shock FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.268 0.243 0.239 0.291 0.270 0.249 0.261 0.391 0.873
N 30566 24832 1832 286 30566 24832 1832 286 2173

Note: the table shows the baseline staggered difference-in-differences for yearly forecasts dis-aggregated at different
forecast horizons: 1 to 4 years and long-term growth rate. For data limitation, 5-year forecasts are not included.
The control variables are forecast days gap, broker size, companies followed, firms experience, industries followed and
firm size. The regression also controls for bias and error from the pre-treatment period. The dependent variables are
multiplied by 100 for interpretability purposes. The standard errors are clustered at the analyst’s office location.

Table 6: Heatwave exposure and heterogeneous firm risk

Firms All High Heatwave Risk Low Heatwave Risk

(1) (2) (3) (4) (5) (6)
Bias Error Bias Error Bias Error

treat*post 0.0454 -0.126* -0.00540 -0.267** 0.0662 -0.0392
(0.0768) (0.0723) (0.150) (0.126) (0.0529) (0.0584)

Controls Yes Yes Yes Yes Yes Yes
Shock*horizon FE Yes Yes Yes Yes Yes Yes
R2 0.336 0.291 0.271 0.201 0.387 0.376
N 6210 6210 2172 2172 4038 4038

The table presents the baseline difference-in-differences for firms with high and low heatwave risks when an analyst
experienced a heatwave for 1-year ahead forecasts (table A5 reports for all horizons). Firms with high heatwave
risk are those with above-median heatwave risks compared to other firms in the sample. Each specification includes
weather shock times horizon fixed effect to account for shock and horizon-specific characteristics. The controls used
are forecast days gap, broker size, companies followed, firms experience, industries followed, and firm size. The
regression also controls for bias and error from the pre-treatment period. The dependent variables are multiplied by
100 for interpretability purposes. The standard errors are clustered at the office location.
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Table 7: Asymmetric information

Panel A CDP Disclosure No CDP Disclosure High Climate Risk Low Climate Risk

(1) (2) (3) (4) (1) (2) (3) (4)
Bias Error Bias Error Bias Error Bias Error

treat*post -0.240*** -0.0252 -0.0428 -0.0703** -0.119 -0.0570* 0.0181 -0.102**
(0.0853) (0.102) (0.0671) (0.0305) (0.0889) (0.0292) (0.0287) (0.0383)

R2 0.174 0.176 0.279 0.326 0.199 0.260 0.516 0.526
N 4372 4372 53204 53204 39102 39102 18474 18474

Panel B High Analysts Coverage Few Analysts Coverage High Risk State Low Risk State

(1) (2) (3) (4) (1) (2) (3) (4)
Bias Error Bias Error Bias Error Bias Error

treat*post -0.0792 -0.0369* -0.00195 -0.159* -0.0657 -0.0372 -0.00431 -0.193***
(0.0837) (0.0207) (0.0672) (0.0864) (0.0813) (0.0240) (0.0541) (0.0469)

Controls Yes Yes Yes Yes Yes Yes Yes Yes
Shock*horizon FE Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.233 0.268 0.323 0.382 0.208 0.266 0.372 0.400
N 41430 41430 16146 16146 36080 36080 21496 21496

Note: the table shows the baseline difference-in-differences for firms with high and low asymmetric information (gray
area). CDP Disclosure refers to companies that disclose their environmental impact to the Carbon Disclosure Project.
High Climate Risk includes companies in sectors classified as high climate as in Choi et al. (2020). High Analyst
Coverage refers to companies in the top quartile of analyst coverage, while Low Analyst Coverage includes all others.
High-Risk State denotes states that have experienced more than four significant weather events. Each specification
includes weather shock times horizon fixed effect to account for shock and horizon-specific characteristics. The
controls used are forecast days gap, broker size, companies followed, firms experience, industries followed, and firm
size. The regression also controls for bias and error from the pre-treatment period. The dependent variables are
multiplied by 100 for interpretability purposes. The standard errors are clustered at the office location.
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Table 8: Attention vs. rational allocation: analysts attention and experience

Panel A (FY1) Inattentive Attentive High Experience Low Experience

(1) (2) (3) (4) (1) (2) (3) (4)
Bias Error Bias Error Bias Error Bias Error

treat*post -0.131* -0.186*** 0.0300 -0.170** -0.0626 -0.281** -0.0640 -0.120***
(0.0780) (0.0584) (0.0522) (0.0706) (0.0919) (0.111) (0.0564) (0.0286)

R2 0.296 0.301 0.167 0.172 0.361 0.353 0.239 0.244
N 19892 19892 7096 7096 8998 8998 21568 21568

Panel B (all horizons) Inattentive Attentive High Experience Low Experience

(1) (2) (3) (4) (1) (2) (3) (4)
Bias Error Bias Error Bias Error Bias Error

treat*post -0.112 -0.133*** 0.0735 -0.0755 -0.0365 -0.149* -0.0722 -0.0612*
(0.0833) (0.0341) (0.0845) (0.0630) (0.106) (0.0788) (0.0633) (0.0318)

Controls Yes Yes Yes Yes Yes Yes Yes Yes
Shock*horizon FE Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.319 0.352 0.220 0.280 0.335 0.357 0.247 0.299
N 36042 36042 15027 15027 16513 16513 41063 41063

Note: The table presents the baseline difference-in-differences for subgroups of analysts based on high and low
attention and experience. Analysts with an attention score (number of forecasts/number of companies followed)
equal to or above the median (10) in the previous year are labeled as ‘attentive’. ‘High experience’ refers to analysts
in the top decile of years worked (more than 13 years) as analysts. Each specification includes a weather shock times
horizon fixed effect to account for shock- and horizon-specific characteristics. The controls used are forecast days gap,
broker size, companies followed, analyst experience, industries covered, and firm size. The regression also controls
for bias and error from the pre-treatment period. The dependent variables are multiplied by 100 for interpretability.
Standard errors are clustered at the office location.

Table 9: Distraction hypothesis

Institutional Owner Relative Importance Brokerage Firms

High Low High Low High Low

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Bias Error Bias Error Bias Error Bias Error Bias Error Bias Error

post*treat -0.0788 -0.126 -0.0272 -0.0551 -0.0768 -0.112*** -0.0535 -0.0250 -0.0518 -0.0625* -0.146 -0.190
(0.111) (0.0890) (0.0626) (0.0350) (0.0800) (0.0269) (0.0417) (0.0502) (0.0585) (0.0349) (0.197) (0.192)

Shock*horizon FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.303 0.329 0.271 0.319 0.317 0.373 0.289 0.326 0.256 0.305 0.408 0.430
N 6701 6701 49001 49001 11557 11557 28123 28123 53552 53552 4024 4024

Note: This table presents the baseline staggered difference-in-differences estimates for yearly forecasts. High Insti-
tutional Owners take the value 1 if firms are ranked in the top 25th percentile in the number of institutional owners
among all covered firms in an analyst’s portfolio and 0 otherwise (from Thomson-Reuters 13F Database). Relative
Importance takes value 1 if a firm is ranked among the top 25th percentile of market cap in an analyst’s portfolio.
Small Brokerage takes the value 1 an analyst is employed within a brokerage firm above the median of its size, as
quantified by the number of employees (13 employees). The control variables are forecast days gap, broker size,
companies followed, firms experience, industries followed, and firm size. The dependent variables are multiplied by
100 for interpretability purposes. The standard errors are clustered at the analyst’s office location.
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Table 10: Forecasting a firm near a weather event

All High Physical Risk Low Physical Risk High Climate Sector Low Climate Sector

Bias Error Bias Error Bias Error Bias Error Bias Error

post*1(experienced a weather event) 0.0718* -0.0993** 0.0743 -0.0791* 0.0591 0.0500 -0.00888 -0.215** 0.123** -0.0213
(0.0365) (0.0477) (0.0445) (0.0453) (0.0833) (0.0958) (0.0826) (0.0926) (0.0527) (0.0227)

Controls Y Y Y Y Y Y Y Y Y Y
Horizon*Firm*Shock FE Y Y Y Y Y Y Y Y Y Y
Analyst FE Y Y Y Y Y Y Y Y Y Y
R2 0.233 0.132 0.286 0.123 0.252 0.163 0.277 0.122 0.277 0.122
N 98914 98914 55613 55613 17903 17903 41091 41091 57821 57821

Note: the table reports the regression of the difference between previously treated analysts forecasting affected firms
in comparison to analysts with no experience of a weather event. Each specification includes weather shock times
horizon fixed effect to account for shock and horizon-specific characteristics. The controls used are forecast days gap,
broker size, companies followed, firms experience, industries followed, and firm size. The dependent variables are
multiplied by 100 for interpretability purposes. The standard errors are clustered at the office location.

Table 11: Climate risks of firms followed by analysts

Share of Forecasted Firms

N. Firms High Physical Risk High Transition Risk High Climate Risk

1(experienced a weather event) 0.222*** -0.0128** -0.0162*** -0.0312***
(0.0730) (0.00524) (0.00505) (0.00496)

Controls Yes Yes Yes Yes
Analyst FE Yes Yes Yes Yes
Quarter*Year FE Yes Yes Yes Yes
R-squared 0.862 0.481 0.506 0.611
N 61511 61511 61511 61511

Note: The table presents a regression where the variable treat equals 1 if the analyst has experienced at least
one significant weather event. The table includes analyst and quarter-year fixed effects. It also includes analyst
covariates such as brokerage size, number of industries and firms followed in a year, an indicator if an analyst was
a top performer in the past three years, and if the analyst has many years of experience. The standard errors are
clustered at the analyst level.
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Table 12: Climate-related questions during earnings calls

Number of Questions

Physical Risks Regulatory Risks Climate Opportunity Any Climate Question

1(experienced a weather event) 0.0103* -0.00116 0.00251 0.0113*
(0.00576) (0.00143) (0.00172) (0.00633)

Controls Yes Yes Yes Yes
Analyst FE Yes Yes Yes Yes
Quarter*Year FE Yes Yes Yes Yes
R-squared 0.0849 0.0517 0.0696 0.0880
N 16615 16615 16615 16615

Note: The table presents a regression where the variable treat equals 1 if the analyst has experienced at least one
significant weather event. The dependent variable is the number of questions an analyst asks in a quarter regarding
physical, regulatory, and opportunity risks, as well as any of the three. The table includes analyst and quarter-year
fixed effects. It also includes analyst covariates such as brokerage size, number of industries followed in a year, an
indicator if an analyst was a top performer in the past three years, and if the analyst has many years of experience.
The sample includes 1,398 analysts who asked at least one question during earnings calls from 2006-2018. The table
includes analysts and quarter*year fixed effects. The standard errors are clustered at the analyst level.

Table 13: Spillover effect to analysts distant to the event

(1) (2) (3) (4)
Consensus Dispersion Bias Error

1(one analyst near)*post -0.0287 -0.0166** -0.161*** 0.0326
(0.0180) (0.00743) (0.0527) (0.0645)

Controls Y Y Y Y
Shock*horizon*Sector FE Y Y Y Y
R2 0.440 0.290 0.216 0.330
N 11740 11740 11740 11740

Note: The table presents the baseline staggered difference-in-differences for the aggregate effect on consensus, dis-
persion, bias, and error at the company level for analysts distant from the event. 1(one analyst near) takes value
one for companies at least one analyst near the event, and treated analysts are those forecasting the company but
distant from the event. Control analysts are those without any treated analysts near the event. Treated and control
companies are required to be in the same sector, state, shock event, and forecast horizon, and are matched based
on coverage, sales, firm size, leverage, operating income, ROA, stock price, and market value. The control variables
include company coverage, firm size, leverage, sales, and operating income. The dependent variables are multiplied
by 100 for interpretability. Standard errors are clustered at the state level and at the office location.
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Table 14: Impact of analyst and firm exposure on future analyst numbers at brokerage firms

Number of analysts by brokerage firmt

All Large Brokerage Small Brokerage

(1) (2) (3) (4) (5) (6)

N. treated firmst−1 0.00161 -0.000963 -0.0285**
(0.0117) (0.0163) (0.0140)

N. treated analystst−1 0.113*** 0.108** -0.0000312
(0.0420) (0.0500) (0.0700)

N. firmst−1 0.0592*** 0.0578*** 0.0672*** 0.0656*** 0.0591*** 0.0582***
(0.00491) (0.00478) (0.00720) (0.00716) (0.00509) (0.00502)

Brokerage Y Y Y Y Y Y
Year Y Y Y Y Y Y
R2 0.953 0.954 0.941 0.941 0.777 0.777
N 3665 3665 1097 1097 2554 2554

Note: The dependent variable in the regression is the number of analysts at the brokerage level. The main independent
variables are the number of firms forecast by the company in the previous year (N. firms), the number of analysts
near a weather event in the previous year (N. treated analysts), and the number of forecasted firms near a weather
event in the previous year (N. treated firms). Large (small) brokerages are defined as those with 13 or more (fewer)
analysts. The regression includes year and brokerage fixed effects. Standard errors are clustered at the brokerage
level.

Table 15: Robustness: excluding New York or California

Excluding: New York California

(1) (2) (3) (4)
Bias Error Bias Error

treat*post 0.0752 -0.131*** -0.0992 -0.0761**
(0.0520) (0.0426) (0.0608) (0.0297)

Controls Yes Yes Yes Yes
Shock*horizon FE Yes Yes Yes Yes
R2 0.287 0.328 0.303 0.345
N 43215 43215 41248 41248

Note: the table shows the baseline staggered difference-in-differences for 1 to 5 years EPS forecasts of an analyst i
forecasting a firm f . The weather shock indicator and the horizon fixed effect are incorporated to account for shock
and horizon-specific characteristics. The controls used are forecast days gap, broker size, companies followed, firms
experience, industries followed, and firm size. The dependent variables are multiplied by 100 for interpretability
purposes. The standard errors are clustered at the office location.
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Table 16: Robustness: analyst’ distance from the weather shock

Distance event (miles) ≤ 50 100-200 200-300

(1) (2) (3) (4) (5) (6)
Bias Error Bias Error Bias Error

treat*post -0.133 -0.214*** -1.032 -0.203 -0.0791 0.0795
(0.139) (0.0576) (0.889) (0.333) (0.138) (0.164)

Controls Yes Yes Yes Yes Yes Yes
Shock*horizon FE Yes Yes Yes Yes Yes Yes
R2 0.247 0.295 0.561 0.596 0.236 0.280
N 53116 53116 7882 7882 22290 22290

Note: This table presents the baseline staggered difference-in-differences estimates for analysts at different distances
from the weather events. Columns 1-2 replicate the analysis for analysts within 50 miles from the event, columns 3-4
for analysts within 100 and 200 miles, and columns 3-4 for 200 to 300 miles. Each specification includes weather shock
times horizon fixed effect to account for shock and horizon-specific characteristics. The controls used are forecast days
gap, broker size, companies followed, firms experience, industries followed, and firm size. The dependent variables
are multiplied by 100 for interpretability purposes. The standard errors are clustered at the office location.

Table 17: Robustness: firms’ NETS establishment

Establishment NETS > 100 miles NETS < 100 miles drop if NETS < 100 miles

(1) (2) (3) (4) (5) (6)
Bias Error Bias Error Bias Error

treat*post -0.136 -0.258*** 0.0816 0.114 -0.0811 -0.0992***
(0.158) (0.0866) (0.0900) (0.0962) (0.0733) (0.0225)

Controls Yes Yes Yes Yes Yes Yes
Shock*horizon FE Yes Yes Yes Yes Yes Yes
R2 0.258 0.300 0.213 0.240 0.277 0.321
N 12148 12148 4304 4304 53272 53272

Note: This table presents the baseline difference-in-differences estimates using the firm’s NETS establishment loca-
tion. Each specification includes forecast horizon and shock ID interacted. The controls used are forecast days gap,
broker size, companies followed, firms experience, industries followed, and firm size. The dependent variables are
multiplied by 100 for interpretability purposes. The standard errors are clustered at the office location.
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Table 18: Variables description - Dependent Variable

Variable Name Description

Forecast Bias The difference between the analyst forecast and the actual earnings
divided by the stock price in the previous quarter

Forecast Error The difference between the analyst forecast and the actual earnings
in absolute terms, divided by the stock price in the previous quarter

Google Search of “Climate Change” the log scaled Google searches of the world ‘climate change’ in a
given state in a month as in Alekseev et al. (2021)

Long-term growth rate (LTG) The long-term growth forecast is a forecast of the growth rate in
earnings per share over a three to five-year horizon as in IBES

Consensus The average forecast for a company in a given month
Dispersion The standard deviation of forecasts for a company in a given month
Number of analysts by brokerage firm The total number of analysts working for a brokerage firm in a

given year
Share of Forecasted Firms Calculates the share of firms with climate risks (both transition,

physical and by sector) over the total number of companies followed
by an analyst in a year

Number of Questions the number of questions an analyst asks in a quarter regarding
physical, regulatory, and opportunity risks, as well as any of the
three
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Table 19: Variables description - Analyst level

Variable Name Description
Forecast Day Gap The difference in days between the forecast and earnings announce-

ment date
Brokerage Size How many analysts are issuing forecasts for a brokerage firm in a

year
Companies Followed How many firms are forecasted by an analyst in a year
Industry Followed How many industries are forecasted by an analyst in a year
Firm Experience The difference in years between the first forecast issued for a firm j

and the analyzed forecasts
Analyst Experience The difference in years between the first forecast issued on IBES

and the analyzed forecasts
Experienced Analysts analysts in the top decile of years of experience in the IBES dataset

(13 years)
Lead Analysts I construct a ratio, the Leader-Follower Ratio (LFR), defined as the

cumulative days of preceding forecasts divided by the cumulative
days of following forecasts, excluding the analyst’s own forecasts.
Analysts with a LFR score above one and in the top decile in a
given year, are classified as lead analysts.

Attentive Analysts Analysts with an attention score (number of forecasts/number of
companies followed) equal to or above the median (10) in the pre-
vious year are labeled as ’attentive.’

High Risk States the state has more than the median climate shocks (4 weather
shocks)

Ex-ante Optimistic (Pessimistic) in the previous quarter the analyst was in the top tercile as an
optimistic (pessimistic) analyst, i.e. the average of their forecasts
was above (below) consensus

High Performance I create analysts’ score following Hong et al. (2000) and I select the
top tercile performer based on the average performance score in the
previous 3 years, both within a firm and a sector.

Analysts’ Political Donation takes the value 1 if the analysts donate to a democratic party (from
FEC)

State Climate Beliefs states with high (low) climate beliefs are states in the top percentile
(bottom 5 percentiles) as the percentage of the population believ-
ing that climate change is happening in 2021 (from Yale Climate
Opinion Maps for 2021)

Sex takes the value 1 if the analyst is female (estimated from the ana-
lyst’s first name)

Small Brokerage takes value 1 if analysts are employed within a brokerage firm above
average regards to its size (more than 13, proxied by the number
of employees)

Socially Connected if analysts are in counties socially connected calculate by Social
Connectedness Index (SCI) from Bailey et al. (2018).
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Table 20: Variables description - firm level

Variable Name Description
Firm Size Logarithm of total assets
Leverage Total debt (short term debt+long term debt) divided by book assets
Operating Income Operating income before depreciation divided by book assets
Market Leverage Market value of firm equity from CRSP divided by book assets
ROA Income before extraordinary items divided by book assets
Stock Price Stock price at t− 1
High Climate Risk (Sector) follow Choi et al. (2020) that categorized as high climate risk ac-

cording to the IPCC, which includes agriculture, mining, utili-
ties, construction, manufacturing, transportation, and warehous-
ing, while classifying all other sectors as low climate risk.

Physical Risk Composite score of the company’s physical risk exposure, i.e. wild-
fire, coldwave, heatwave, hurricane, sea level rise, flood, and water
stress (from Trucost Climate Change Physical Risk Data). Physi-
cal risk scores are represented as values from 1 (lowest risk) to 100
(highest risk) and forecasted for the year 2020 averaged across all
future scenarios (high, medium, and low)

CDP Disclosure takes the value 1 if companies that disclose their environmental
impact to the Carbon Disclosure Project

High Analyst Coverage takes the value 1 if companies in the top quartile of analyst coverage
High Physical Risk firm takes the value 1 if the firm’s physical risk score is greater than the

average physical risk composite score in the sample (i.e. more than
60 points)

High Heatwave Risk takes value 1 if the firm individual score for heatwave risk is greater
than the average physical risk in the sample

High Transition Risk takes value 1 if the firm’s transition risks are in the top tercile and
zero otherwise. Transition risks are proxied by Unpriced Carbon
Cost adjusted EBITDA of the year 2020 (Carbon Earnings at Risks)
forecasted for the year 2020 averaged across all future scenarios
(high, medium, and low)

Establishment Location geographical coordinates of establishment location from NETS
Database

High Institutional Owners takes the value 1 if firms that are ranked in the top 25th percentile
in the number of institutional owners among all covered firms in
an analyst’s portfolio and 0 otherwise (from Thomson-Reuters 13F
Database)

Relative Importance takes value 1 if a firm is ranked among the top 25th percentile of
market cap in an analyst’s portfolio
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Online Appendix

A Descriptive Statistics

Figure A1 maps the location of my total sample of analysts throughout the US (not filtered by

control and treated). Not surprisingly, 68% of equity analysts are located in the state of New York,

followed by 7% in California and 4% in Illinois.

Figure A3 maps the selected salient weather shocks that occurred near an analyst’s office location

from 1999 to 2020 by the US state. The states with the highest number of shocks are California and

Oregon with 46 and 47 shocks. The state with the lowest number of weather events is Washington

with three weather shocks.

B Analysts’ Characteristics

For studying individuals’ beliefs, I construct a series of analysts’ characteristics commented below.

1. Living in climate-sensitive states: Climate-sensitive states are constructed using the

entire natural hazard dataset and looking at the median number of shocks per state and by

setting high climate-sensitive states as states with more than 4 natural events. These states

are Texas, Tennessee, Connecticut, Florida, Ohio, California, Pennsylvania, Maryland, and

New York and 87% of analysts are located there.

2. Experience: As for analysts’ experience, it is quantified by the number of years an analyst

has been included in the IBES dataset. Looking at the entire IBES dataset, I define analysts

in the top decile as highly experienced analysts (with more than 13 years).

3. Gender: The determination of the gender of equity analysts is accomplished using Chat GPT,

which categorizes analysts’ names as female, male, or uncertain. This categorization results

in 14% of the total analyst sample being identified as female, while 5% remain uncertain.

4. Lead: Another approach to categorizing skilled analysts is based on the timeliness of their

forecasts. Following the methodology of Cooper et al. (2001), I construct the Leader-Follower

Ratio (LFR), defined as the cumulative days of preceding forecasts divided by the cumulative

days of following forecasts, excluding the analyst’s own forecasts. Analysts with an LFR score
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above one and who are in the top decile for a given year are classified as lead analysts. This

metric can be calculated at both the firm and sector levels, although Cooper et al. (2001)

argue that the sector level is more representative of the industry.

5. Mindset: The value of optimism is assigned as value 1 if an analyst’s forecast exceeds the

consensus forecast (calculated as the average forecast for a specific firm over a month for a

specific forecast horizon) and 0 otherwise. Subsequently, I compute the average optimism

score for each analyst within a fiscal year. Based on these scores, analysts are categorized

into terciles within a fiscal year. Ex-ante pessimistic analysts are the ones in the top tercile

of pessimism scores in the previous year, and all the others are defined as ‘non-pessimistic’.

Conversely, the opposite holds for optimism.

6. Performance: The performance measurement methodology, as described in Hong et al.

(2000), follows a systematic process. Firstly, the forecast error is computed for each analyst

by taking the absolute difference between their forecasted values and the actual values. Sub-

sequently, analysts are ranked within their respective firms based on the forecast error, and

this ranking is adjusted according to the number of analysts associated with each firm. The

resulting rankings yield individual performance scores for analysts within a given year. To

determine an analyst’s overall performance score, the average score from the past three years

is used. Analysts who fall into the top tercile of performance scores from the previous year

are identified as the ‘top-performing’ analysts. At the sector level, an analyst’s performance

score is ranked within their sector each year, with top performers similarly defined as those

in the top tercile.

7. Political variables: I proxy for political affiliation using Political Donation Data from the

FEC dataset, which reports any individual donation above 200 dollars for a party. The merge

is conducted by analysts’ names and states. Moreover, I manually checked that the reported

companies match the brokerage firm with which the analyst is working. Using the data from

2000 to 2018, I find 203 analysts of which 51% conducted democratic donations. 39

39Note that in Jiang et al. (2016) they can find a sample of 673 donor analysts, during the 1993 to 2008 period.
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Additional Results. Table A19 offers a breakdown of the baseline results by analyst character-

istics. The findings reveal that male and Democratic analysts exhibit the most significant improve-

ments in forecast accuracy, without a noticeable change in forecast bias. Reassuringly, the effect

seems to be driven by analysts who were more pessimistic on average in the previous year and are

now becoming even more pessimistic and accurate. This indicates that the observed effect is not

merely due to a general decrease in optimism among previously optimistic analysts.

C Climate News

I explore whether the news about climate change increases after an extreme event. This is important

because changes in analysts’ beliefs should be driven by first-hand experience shocks and not other

types of occurring events, such as an increase in climate news. Ideally, I would like to examine

variations in climate-related news at both the local and national levels. However, due to data

limitations, the currently available indexes are only constructed at the national level. This implies

that I can only utilize variations over time and not across states; hence, I cannot include state-fixed

effects.

Two climate news indexes are used as dependent variables in table A20. Columns 1-2 use the

Sentometric index on news about global warming constructed by Ardia et al. (2020), while columns

3-4 use the Wall Street Journal (WSJ) climate news indices created by Engle et al. (2020). The

results in table A20 are not statistically significant. These findings highlight that selected extreme

events affect climate change beliefs, but not national climate news.

D Firms’ Climate Risks

Defining firms’ climate risk is challenging. One way to leverage the data is to categorize firms by

high and low-risk sectors. However, this approach is also not trivial. First, because we lose firms’

heterogeneity within the sector. Second, most climate risk assessments focus on transition risks and

often fail to capture physical risks. In the main analysis, I use the IPCC definition of risky sectors,

as outlined by Choi et al. (2020), which primarily relates to transition risks.

Table A21 column 1-4 categorizes firms into high and low climate risk sectors based on criteria

from Addoum et al. (2020), which emphasize the direct impact of high temperatures (physical risks)

61



on companies. Columns 5-8 present a mixed definition that incorporates both transition (as in Choi

et al., 2020) and physical risks (as in Addoum et al., 2020). The results still show a stronger effect

for low-risk sectors, but this effect is somewhat mitigated compared to the IPCC definition.

For firm-specif classification, I use Trucost estimates to categorize firms based on high and

low climate physical and transition risks. For overall physical risks, I use Trucost’s physical risk

composite score, while for transition risks, I consider actual emissions and carbon earnings at risk.

High physical risks are defined as above-median composite physical risk scores, given the smaller

variation, while high transition risks are represented by firms in the top tercile of carbon earnings

at risk.

Table A22 presents results broken down by firms with above-median and below-median phys-

ical risks. Consistent with sector-level findings, it shows that the increase in inaccuracy is more

pronounced for firms with low physical risks. This isn’t surprising, as physical risks span various

hazards, and analysts (at least for heatwaves) tend to be more accurate when dealing with familiar

risks.

For transition risks, I use two variables: actual emissions (a backward-looking measure) and

carbon earnings at risk (a forward-looking measure). Table A9 shows that analysts become more

pessimistic overall, with a marked increase in forecast inaccuracy for high transition risk firms, while

becoming more optimistic—but less accurate—for low transition risk firms. The results for actual

emissions in Table A7 are similar, but in this case, increased optimism for low transition risk firms

(bottom tercile) also translates into worse forecast errors.

E Firms’ Business Location

In this analysis, I examine whether companies mention a state as their business location in their

10-K filings from Garcia and Norli (2012).40 This allows me to control for firms with extensive

geographic dispersion, which may present challenges for analysts in accurately estimating climate

risks. Additionally, it enables me to exclude firms with business locations in the treated states, thus

allowing for a more precise analysis.

Table A23 presents the results for firms divided into two categories. Columns 1-2 include firms

with at least one business location mentioned in their 10-K filings in the same state as the weather

40I thank Mandeep Singh for sharing the updated version of the geographical dispersion data up to 2018.
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shock onset, while columns 3-4 consist of firms with business locations in other states. The results

indicate that the effects are driven by firms with at least one business location in the same state

as the shock onset. This may indicate that analysts are able to gather some information from the

event about the firms’ business operations (even if there is no direct impact on the overall business).

F Additional Analysis

Analysts’ target price and recommendation. I start cleaning the target price IBES dataset.

Following Ou and Wang (2024), I exclude observations where the target price to current price ratio

is below 0.7, above 4, or equal to 1. I then construct the absolute target price forecast error as the

deviation of the “realized” price (the stock price 12 months after the target price announcement)

from the target price in absolute terms. More formally, this is the logarithm of the stock price 12

months ahead divided by the current stock price minus the logarithm of the target stock price 12

months ahead forecasted by an analyst divided by the current stock price.

For analysts’ recommendations, I follow Loh and Stulz (2011) and include only those outstanding

ratings where the difference between the revision date and the announcement is no more than 12

months. Additionally, I include only companies that received at least one recommendation in a

year from a minimum of three analysts. I also reverse the coding so that 5 = strong buy, 4 = buy,

3 = hold, 2 = sell, and 1 = strong sell, meaning a higher recommendation is better. To address

the changes in rating distribution caused by the National Association of Securities Dealers (NASD)

Rule 2711 implemented in 2002, I only keep recommendations from 2004.

For my analysis, I use the methodology outlined in Section 3. Analysts located within 100 miles

of an event are defined as treated, and those farther away are controls that forecast firms in the

same sector as the treated analysts. All the firms have to be distant from the event, and analysts

forecasting at least one firm near the shock are excluded. I keep the last observation in the months

before the event and the first right after (allowing a 3-month window). The sample for target

price includes 46 events with 736 analysts near the event and 1,600 control analysts forecasting

2,585 companies. Due to the lower number of recommendations, the sample size is relatively small,

comprising 29 events involving 254 treated analysts and 415 control analysts, forecasting 700 firms.
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Stock price. To test whether forecast revisions made by analysts near a weather event have

a greater impact on stock prices than revisions made by control analysts, I follow Malloy (2005)

and run Fama and MacBeth (1973) cross-sectional regressions of average excess return on the

magnitude of the revision. Such a finding would provide strong evidence that treated analysts have

an information advantage over other analysts. This type of test also helps gauge the economic

significance of my prior results.

My main regression is:

AARjt = α0 + α1LNMEj,−30 + α2SUFij0 + α5treati + ϵijt (3)

Where AAR is computed following Beaver et al. (1979) and Atiase (1985) by running a rolling

regression of stock return on market return from 2 years to 6 months before the event episode

for a firm j. I then keep the estimated coefficients from the regressions (α̂ and β̂) constant for

the entire post-event period to estimate the unexpected price changes during the period as ujt =

Rjt − (α̂ + β̂Rmt). AARjt is then defined as the average unexpected price return for the window

period of interest (x to x̄) after the forecast revision:

AARjt =

∑+x̄
t=+x ujt

T
(4)

In the regression, I also control for the logarithm of the firm’s market capitalization in the month

before the event. The standardized unexpected forecast equals analyst i’s forecast for firm j on day

0 minus analyst i’s prior forecast for firm j (before the event), scaled by the cross-sectional standard

deviation of all prior outstanding forecasts for firm j. As in Malloy (2005), all standard deviations

below 0.25$ are set to 0.25$ to mitigate small denominators. treat is the dummy variable that takes

the value 1 if the analyst is near a salient weather event.
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G Appendix Figures

Figure A1: Analysts’ location from 1999 to 2020 by state - Full Sample

Note: The graph maps the IBES analysts’ locations from 1999 to 2020 by US state obtained from Refinitiv and
Capital IQ-Professional. Among 2894 analysts, the state of New York has the highest number of analysts with 2017
individuals, followed by California with 235 analysts, 105 analysts in Illinois, and 85 in Massachusetts.

Figure A2: All salient weather events from 1999 to 2020 by state

Note: The graph maps the Selected Storm Events from 1999 to 2020 by US state. The state with the highest number
of shocks is Texas.
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Figure A3: Salient weather events from 1999 to 2020 by state near treated analysts

Note: The graph maps the Selected Storm Events from 1999 to 2020 merged to analysts location by US state. Notice
that only weather shocks that occur near analysts are reported in the graph. The states with the highest number of
shocks are New York, California, and Texas.

Figure A4: Changes in firms’ fundamentals around the weather shock

Note: the graph illustrates differences in firms’ fundamentals for firms forecasted by the analysts before and after a
weather event. The independent variable is an indicator that takes the value of one after the weather event and zero
before. Sales, revenue, and working capital are scaled by 1,000 to ensure compatibility and ease of comparison. We
selected the first available data for the forecasted firm one quarter before and one quarter after the weather shock.
The table includes fixed effects for the weather event.
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Figure A5: Parallel trend
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Note: The figures plot the estimated coefficients for the pre- and post-period interactions between treatment (prox-
imity to a weather event) and month indicators for both bias (blue) and error (maroon), along with 99%, 95%, and
90% confidence intervals. The reference point is the month prior to the weather event. The analysis includes all
analysts who issue forecasts in each month leading up to the event. The specification incorporates all covariates,
with the shock interacted with horizon-fixed effects. The event window spans from 3 months before to 3 months
after the event. Standard errors are clustered by the analysts’ office location.
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Figure A6: Effect on analysts forecasts by firms sector
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Note: The graph plots the estimated coefficients from the difference in difference in bar plots with 95% confidence
intervals for bias (blue) and error (maroon). The DIDs are run separately for each sector. The specification includes
all baseline covariates and includes forecasted horizon*weather shock fixed effect. The analysis keeps only one forecast
before and after the event. The standard errors are clustered at the analyst’s office location.
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Figure A7: Effect on analysts forecasts by type of event
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Note: The graph plots the estimated coefficients from the difference in difference in bar plots with 95% confidence
intervals for error (black) and bias (maroon). The DIDs are run separately for each event’s type. The specification
includes all covariates and forecasted horizon*weather shock fixed effect. The analysis keeps only one forecast before
and after the event. The standard errors are clustered at the analyst’s office location.
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Figure A8: Placebo exercise: randomly generated weather shocks date
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The figure displays the estimated effect sizes for 30 randomly generated weather event dates, using locations from
the actual weather events in the sample. Standard errors are reported at the 5% significance level. The Difference-
in-Differences (DID) regression used for these estimates is the baseline regression with controls and fixed effects.
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Figure A9: Persistence of the effect after the event (all horizons)
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Note: figures plot the estimated coefficients from the staggered difference in difference in bar plots with 99%, 95%
and 90% confidence intervals for error (red) and bias (blue). The specification includes all covariates and forecasted
horizon*weather shock fixed effect. The analysis keeps only one forecast before and after the event. The standard
errors are clustered at the analyst’s office location.
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H Appendix Tables

Table A1: Summary statistics for the entire dataset

Mean p50 SD Min Max
forecast bias (%) 0.81 0.04 4.31 -33.08 66.38
forecast error (%) 2.19 0.78 4.14 0.00 83.20
companies followed 17.47 17.00 7.83 1.00 80.00
firm experience 3.47 2.00 3.60 0.00 21.00
general experience 7.45 7.00 5.12 0.00 21.00
Industries followed 2.12 2.00 1.37 1.00 11.00
brokerage size 85.78 70.00 56.00 1.00 284.00
firm size 8.46 8.41 1.93 -0.86 14.83
leverage 0.25 0.22 0.23 0.00 5.10
market value 1.76 1.08 25.26 0.01 12253.26
stock price 50.79 35.94 67.24 0.32 3808.41
ROA 0.01 0.01 0.19 -166.00 10.69

N 1588202

Note: The table reports the summary statistics for the whole sample of analysts (before matching with weather
shocks). Forecast bias is defined as the difference between the earnings forecast of an equity analyst i for a firm
f in the month t minus the actual earnings divided by the stock price for a firm f in the previous quarter t − 1,
while forecast error differs from forecast bias only by having the numerator in absolute terms. Both are expressed in
percentages. See tables 19 and 20 for a description of the variables used.
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Table A2: State population belief in global warming and concern after a weather event

Global warming is happening Worried about global warming

(1) (2) (3) (4) (5) (6)

Fatalities 0.365 0.579***
(0.242) (0.198)

Injuries 0.518 0.265
(0.475) (0.472)

1 bil. $ damages 0.528* 0.401**
(0.275) (0.180)

Year FE Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes
R2 0.966 0.966 0.966 0.978 0.977 0.977
N 561 561 561 561 561 561

Note: I use data from the Yale Climate Opinion Maps 2023 (Howe et al., 2015). The dependent variables ‘Is
Happening’ represent the estimated percentage who think that global warming is happening, and ‘Worried’ represents
the estimated percentage who are somewhat/very worried about global warming, expressed as percentages at the
state-year level. Both variables are led by one year. The standard errors are clustered at the state levels, and
observations are weighted by each state’s population size.
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Table A3: Baseline result with FE

(1) (2) (3) (4) (5) (6)
Bias Error Bias Error Bias Error

post time 0.00858 -0.0350** -0.0514* -0.124*** -0.0525* -0.122***
(0.0354) (0.0155) (0.0292) (0.0293) (0.0277) (0.0276)

treat -0.377 -0.126 -0.0866 -0.0134 0.258* -0.373***
(0.243) (0.140) (0.0984) (0.0504) (0.148) (0.113)

treat*post -0.0587 -0.0721** -0.0429 -0.0176 -0.0432 -0.0181
(0.0706) (0.0293) (0.0664) (0.0413) (0.0585) (0.0418)

Controls Yes Yes Yes Yes Yes Yes
Shock*Horizon FE Yes Yes Yes Yes Yes Yes
Analyst*Firm FE Yes Yes No No No No
Year*Firm FE No No Yes Yes No No
Year*State FE No No No No Yes Yes
R2 0.585 0.653 0.669 0.718 0.283 0.329
N 57576 57576 57274 57274 57573 57573

Note: the table shows the baseline staggered differences-in-differences (DID) for 1 to 5 years EPS forecasts of an
analyst i forecasting a firm f . The weather shock indicator and the horizon fixed effect are incorporated to account
for shock and horizon-specific characteristics. The table also includes analyst*firm fixed effects, year interacted with
firm ID fixed effects, and year interacted with state ID fixed effects. The controls used are forecast days gap, broker
size, companies followed, firms experience, industries followed, and firm size. The dependent variables are multiplied
by 100 for interpretability purposes. The standard errors are clustered at the office location.
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Table A4: Baseline result for 1-year horizon with FE

(1) (2) (3) (4) (5) (6)
Bias Error Bias Error Bias Error

post 0.0155 -0.0424** 0.000445 -0.112*** 0.000910 -0.111***
(0.0250) (0.0186) (0.0263) (0.0310) (0.0228) (0.0273)

treat -0.225** 0.0318 0.0315 0.0345 0.289*** -0.194**
(0.105) (0.110) (0.0427) (0.0269) (0.0783) (0.0762)

treat*post -0.0598 -0.153*** -0.0621 -0.106** -0.0696 -0.111**
(0.0646) (0.0374) (0.0683) (0.0508) (0.0542) (0.0446)

Controls Yes Yes Yes Yes Yes Yes
Shock*horizon FE Yes Yes Yes Yes Yes Yes
Analyst*Firm FE Yes Yes No No No No
Year*Firm FE No No Yes Yes No No
Year*State FE No No No No Yes Yes
R2 0.694 0.731 0.800 0.827 0.285 0.290
N 30566 30566 29921 29921 30561 30561

Note: the table shows the baseline staggered differences-in-differences (DID) for 1 year EPS forecasts of an analyst i
forecasting a firm f . The weather shock indicator and the horizon fixed effect are incorporated to account for shock
and horizon-specific characteristics. The table also includes analyst*firm fixed effects, year interacted with firm ID
fixed effects, and year interacted with state ID fixed effects. The controls used are forecast days gap, broker size,
companies followed, firms experience, industries followed, and firm size. The dependent variables are multiplied by
100 for interpretability purposes. The standard errors are clustered at the office location.
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Table A5: Heatwave exposure and heterogeneous firm risk (all horizons)

All High Heatwave Risk Low Heatwave Risk

(1) (2) (3) (4) (5) (6)
Bias Error Bias Error Bias Error

treat*post 0.0799 -0.0346 0.00474 -0.121 0.119*** 0.0131
(0.0553) (0.0505) (0.0932) (0.0885) (0.0435) (0.0398)

Controls Yes Yes Yes Yes Yes Yes
Shock*horizon FE Yes Yes Yes Yes Yes Yes
R2 0.35 0.37 0.25 0.30 0.46 0.47
N 12434 12434 4358 4358 8076 8076

The table presents the baseline difference-in-differences for firms with high and low heatwave risks when an analyst
experienced a heatwave for all horizons. Firms with high heatwave risk are those with above-median heatwave
risks compared to other firms in the sample. Each specification includes weather shock times horizon fixed effect to
account for shock and horizon-specific characteristics. The controls used are forecast days gap, broker size, companies
followed, firms experience, industries followed, and firm size. The regression also controls for bias and error from the
pre-treatment period. The dependent variables are multiplied by 100 for interpretability purposes. The standard
errors are clustered at the office location.

Table A6: Firms’ climate physical and transition risk

High Physical Risk Low Physical Risk

All High Transition Risk Low Transition Risk High Transition Risk Low Transition Risk

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Bias Error Bias Error Bias Error Bias Error Bias Error

treat*post -0.136** -0.0507 -0.257*** -0.129** 0.202*** 0.177* -0.231 -0.0774** -0.0805 -0.159
(0.0578) (0.0325) (0.0520) (0.0529) (0.0544) (0.0906) (0.152) (0.0373) (0.159) (0.130)

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Shock*horizon FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.191 0.221 0.183 0.211 0.239 0.268 0.279 0.293 0.311 0.338
N 29168 29168 13566 13566 6840 6840 6656 6656 2106 2106

Note: the table shows the baseline differences-in-differences for firms in high and low physical and transition risks.
The firm’s physical risk is a composite score of all the company’s physical risk exposure, i.e. wildfire, coldwave,
heatwave, hurricane, sea level rise, flood, and water stress (from Trucost Climate Change Physical Risk Data). The
score takes values from 1 (lowest risk) to 100 (highest risk). Firms with more (less) than the median physical risk
composite score in the sample (i.e. more than 60 points) are defined as high (low) risk. I use Trucost’s Unpriced
Carbon Cost adjusted EBITDA to gauge transition risks, which compares a company’s current carbon expenses with
projected future costs. High-risk firms are those in the top tercile of earnings at risk for 2020 across different scenarios
(high, medium, low), while the rest are considered non-risky. The weather shock indicator and the horizon fixed
effect are incorporated to account for shock and horizon-specific characteristics. The controls used are forecast days
gap, broker size, companies followed, firms experience, industries followed, and firm size. The dependent variables
are multiplied by 100 for interpretability purposes. The standard errors are clustered at the office location.
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Table A7: Transition risk proxied by carbon emission

Firm’s Emissions All Top Tercile Bottom Tercile

(1) (2) (3) (4) (5) (6)
Bias Error Bias Error Bias Error

treat*post -0.0386 0.0363 -0.242*** -0.0877* 0.233*** 0.194*
(0.0623) (0.0460) (0.0800) (0.0462) (0.0589) (0.100)

Controls Yes Yes Yes Yes Yes Yes
Shock*horizon FE Yes Yes Yes Yes Yes Yes
R2 0.266 0.322 0.295 0.335 0.297 0.375
N 13638 13638 7074 7074 6564 6564

Note: the table shows the baseline differences-in-differences for firms in high and low transition risks. High transition
risk firms are defined as those in the top tercile of MSCI absolute scope 1 emissions data, while all others are
classified as low risk. The weather shock indicator and the horizon fixed effect are incorporated to account for shock
and horizon-specific characteristics. The controls used are forecast days gap, broker size, companies followed, firms
experience, industries followed, and firm size. The dependent variables are multiplied by 100 for interpretability
purposes. The standard errors are clustered at the office location.

Table A8: Firms’ forecast dispersion

Low Forecast Dispersion High Forecast Dispersion

(1) (2) (3) (4)
Bias Error Bias Error

treat*post 0.0402 -0.0417 -0.404*** -0.229***
(0.0580) (0.0313) (0.118) (0.0775)

Controls Yes Yes Yes Yes
Shock*horizon FE Yes Yes Yes Yes
R2 0.361 0.381 0.237 0.266
N 44118 44118 8863 8863

Note: The data is divided using the firms’ forecast dispersion. First, I calculate dispersion as the standard deviation
of all forecasts made for a firm over a given horizon in a month. Then, in each month, I create quartiles of forecast
dispersion. For a given firm, I average the quartiles at the monthly level for the year. Forecast dispersion is classified
as high dispersion if it falls into the top quartile of dispersion in the previous year for a given forecast horizon;
the bottom quartile includes all the other quartiles. Each specification includes weather shock times horizon fixed
effects to account for shock and horizon-specific characteristics. The controls used are forecast days gap, broker size,
companies followed, firms’ experience, industries followed, and firm size. The dependent variables are multiplied by
100 for interpretability purposes. The standard errors are clustered at the office location.
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Table A9: Firms’ climate transition risk proxied by earnings at risk

All High Transition Risk Low Transition Risk

(1) (2) (3) (4) (5) (6)
Bias Error Bias Error Bias Error

treat*post -0.137** -0.0528 -0.247*** -0.114*** 0.127** 0.0926
(0.0577) (0.0332) (0.0574) (0.0344) (0.0619) (0.0719)

Controls Yes Yes Yes Yes Yes Yes
Shock*horizon FE Yes Yes Yes Yes Yes Yes
R2 0.192 0.222 0.202 0.218 0.234 0.266
N 29586 29586 20552 20552 9034 9034

Note: the table shows the baseline differences-in-differences for firms in high and low climate transition risk. I use
Trucost’s Unpriced Carbon Cost adjusted EBITDA to gauge transition risks, which compares a company’s current
carbon expenses with projected future costs. High-risk firms are those in the top tercile of earnings at risk for 2020
across different scenarios (high, medium, low), while the rest are considered non-risky. The weather shock indicator
and the horizon fixed effect are incorporated to account for shock and horizon-specific characteristics. The controls
used are forecast days gap, broker size, companies followed, firms experience, industries followed, and firm size. The
dependent variables are multiplied by 100 for interpretability purposes. The standard errors are clustered at the
office location.

Table A10: Lead and follower analysts

Firm Lead-Follower Sector Lead-Follower

Lead Follower Lead Follower

(1) (2) (3) (4) (5) (6) (7) (8)
Bias Error Bias Error Bias Error Bias Error

treat*post 0.157* -0.0667 -0.0669 -0.0998*** -0.0769 -0.239** -0.0218 -0.0724**
(0.0815) (0.0877) (0.0658) (0.0309) (0.112) (0.0832) (0.0654) (0.0336)

Controls Y Y Y Y Y Y Y Y
Shock*Hor FE Y Y Y Y Y Y Y Y
R2 0.263 0.130 0.298 0.126 0.277 0.160 0.291 0.124
N 8005 8005 33656 33656 4671 4671 36989 36989

Note: the table shows the baseline difference-in-differences for lead-follower analysts constructed at the firm and
sector level following Cooper et al. (2001). The weather shock indicator and the horizon fixed effect are incorporated
to account for shock and horizon-specific characteristics. The controls used are forecast days gap, broker size,
companies followed, firms experience, industries followed, and firm size. The dependent variables are multiplied by
100 for interpretability purposes. The standard errors are clustered at the office location.
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Table A11: Performance

Firm Performance Sector Performance

High Low High Low

(1) (2) (3) (4) (5) (6) (7) (8)
Bias Error Bias Error Bias Error Bias Error

treat*post 0.146** 0.0583 -0.100 -0.106** -0.0673 -0.113** 0.0380 -0.0992
(0.0693) (0.0584) (0.0669) (0.0461) (0.0541) (0.0439) (0.0959) (0.0757)

Controls Y Y Y Y Y Y Y Y
Shock*Hor FE Y Y Y Y Y Y Y Y
R2 0.340 0.388 0.252 0.296 0.259 0.311 0.280 0.309
N 11503 11503 46073 46073 31259 31259 19059 19059

Note: the table shows the baseline difference-in-differences for high and low performance analysts constructed fol-
lowing Hong et al. (2000). Firm (sector) performance is constructed using the top analysts regarding forecast error
for a firm (sector). The weather shock indicator and the horizon fixed effect are incorporated to account for shock
and horizon-specific characteristics. The controls used are forecast days gap, broker size, companies followed, firms
experience, industries followed, and firm size. The dependent variables are multiplied by 100 for interpretability
purposes. The standard errors are clustered at the office location.

Table A12: Geographical distance of analysts from forecasted firms

Companies Near Analysts Companies Distant from Analysts

(1) (2) (3) (4)
Bias Error Bias Error

treat*post -0.0682 -0.117*** -0.0334 -0.0237
(0.0638) (0.0420) (0.0765) (0.0509)

Controls Yes Yes Yes Yes
Shock*horizon FE Yes Yes Yes Yes
R2 0.261 0.293 0.278 0.338
N 28823 28823 28753 28753

Note: The table shows the baseline differences-in-differences results, broken down by the geographical distance
between firms and analysts. Companies Near Analysts are within 752 miles of the analysts, which is the median
distance, while Companies Distant from Analysts are farther than the median. The results remain consistent when
breaking down the distance by quartiles, comparing the 1st-2nd quartiles to the 3rd-4th quartiles. The weather
shock indicator and horizon fixed effects are included to account for shock and horizon-specific characteristics. The
controls used are forecast days gap, broker size, number of companies followed, firm experience, industries followed,
and firm size. The dependent variables are multiplied by 100 for interpretability. Standard errors are clustered at
the office location.
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Table A13: Analysts’ target price forecast error

Price Target Forecast Error

(1) (2) (3) (4) (5)

post -0.0135*** -0.0134*** -0.0134*** -0.0134*** -0.0133***
(0.00272) (0.00271) (0.00283) (0.00283) (0.00268)

treat 0.00118 0.0101 0.0203* 0.0192** 0.00921
(0.0122) (0.0116) (0.0112) (0.00733) (0.0123)

post*treat -0.0246*** -0.0246*** -0.0246*** -0.0249*** -0.0247***
(0.00514) (0.00512) (0.00530) (0.00530) (0.00511)

Controls No Yes Yes Yes Yes
Shock FE Yes Yes Yes Yes Yes
Analyst FE No No Yes No No
Firm FE No No No Yes No
Brokerage FE No No No No Yes
R2 0.195 0.214 0.381 0.564 0.235
N 46858 46846 46846 46846 46845

Note: The table reports the estimated coefficients for the baseline regression using analyst recommendations as the
dependent variable. The dependent variable is constructed as the logarithmic return of stock i(the price in 12 months
divided by the price today) minus the logarithmic implied return of stock i(the target price of stock issued by the
analyst with a 12-month forecast horizon divided by the current price of the stock), all in absolute terms. The last
columns also include a triple interaction for firms in high climate sectors, high physical risk, and high transition
risks. Each specification includes weather shock indicator fixed effects (FE). I also include analyst FE, firm FE, and
brokerage FE. The controls used are broker size, companies followed, firm experience, industries followed, and firm
size. The standard errors are clustered at the office location.
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Table A14: Analysts’ recommendation

Analyst Recommendation

(1) (2) (3) (4) (5)

post -0.0896 -0.0895 -0.0925 -0.0903 -0.0942
(0.0645) (0.0645) (0.0693) (0.0732) (0.0677)

treat 0.0654 0.0926 -0.0183 0.131** 0.105
(0.0736) (0.0725) (0.0897) (0.0564) (0.0665)

post*treat -0.0419 -0.0424 -0.0322 -0.0401 -0.0342
(0.0623) (0.0626) (0.0668) (0.0713) (0.0626)

Controls No Yes Yes Yes Yes
Shock FE Yes Yes Yes Yes Yes
Analyst FE No No Yes No No
Firm FE No No No Yes No
Brokerage FE No No No No Yes
R2 0.03 0.03 0.34 0.40 0.11
N 2728 2728 2728 2728 2727

Note: The table reports the estimated coefficients for the baseline regression using analyst target price forecast error
as the dependent variable. A higher recommendation is better, with 5 = strong buy, 4 = buy, 3 = hold, 2 = sell,
and 1 = strong sell. The last columns also include a triple interaction for firms in high climate sectors, high physical
risk, and high transition risks. Each specification includes weather shock indicator fixed effects (FE). I also include
analyst FE, firm FE, and brokerage FE. The controls used are broker size, companies followed, firm experience,
industries followed, and firm size. The standard errors are clustered at the office location.
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Table A15: Distant & skilled analysts

Panel A Treated Experienced Analyst

(1) (2) (3) (4)
Consensus Dispersion Bias Error

1(treated analyst)*post -0.295 -0.0138 -0.140 0.282***
(0.214) (0.0402) (0.125) (0.101)

R2 0.432 0.290 0.207 0.317
N 10477 10477 10477 10477

Panel B Treated Top Performance Analyst

(1) (2) (3) (4)
Consensus Dispersion Bias Error

1(treated analyst)*post 0.118 -0.0302** -0.243** -0.145
(0.155) (0.0146) (0.115) (0.119)

R2 0.437 0.295 0.206 0.317
N 10640 10640 10640 10640

Panel C Treated Lead Analyst

(1) (2) (3) (4)
Consensus Dispersion Bias Error

1(treated analyst)*post 0.532 0.0148 -0.319** -0.00883
(0.361) (0.0180) (0.130) (0.117)

Controls Y Y Y Y
Shock*horizon*Sector FE Y Y Y Y
R2 0.440 0.290 0.204 0.308
N 10007 10007 10007 10007

: The table presents the baseline staggered difference-in-differences for the aggregate effect on
consensus, dispersion, bias, and error at the company level for analysts distant from the event.
1(one analyst near) takes value one for companies with at least one analyst near the event, and
treated analysts are those forecasting the company but distant from the event. Panel A reports
results for analysts who have experienced a weather event, Panel B focuses on top-performing
analysts, and Panel C highlights results for lead analysts. Control analysts are those without any
treated analysts near the event. Treated and control companies are required to be in the same
sector, state, shock event, and forecast horizon, and are matched based on coverage, sales, firm
size, leverage, operating income, ROA, stock price, and market value. The control variables include
company coverage, firm size, leverage, sales, and operating income. The dependent variables are
multiplied by 100 for interpretability. Standard errors are clustered at the state level and at the
office location.
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Table A16: Firms followed by brokerage firms

1(High Market Cap) 1(High PR) 1(High TR) 1(High Market Cap) 1(High PR) 1(High TR)
(1) (2) (3) (4) (5) (6)

N. treated firms 0.00563 -0.00901* 0.00636 0.00510 0.000707 -0.00365
(0.00411) (0.00530) (0.00401) (0.00358) (0.00347) (0.00283)

N. treated analyst 0.00666* -0.0000281 0.0133*** 0.00510 -0.000487 0.00463*
(0.00384) (0.00439) (0.00403) (0.00374) (0.00332) (0.00275)

Year FE Yes Yes Yes Yes Yes Yes
Firm Sector FE Yes Yes Yes Yes Yes Yes
Brokerage FE No No No Yes Yes Yes
R2 0.412 0.0585 0.375 0.418 0.0652 0.382
N 124592 124592 124592 124592 124592 124592

Note: The table reports the linear probability model of a brokerage firm following a company with a high market
cap, high physical risk, and high transition risk, based on the number of analysts and firms near an event in the
previous year. Control variables include ROA, stock price, market value, leverage, number of analysts covering the
company, firm size, and sales from the previous year. Standard errors are clustered at the firm level.
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Table A17: Effect of forecast revision on stock return

All Good Bad Good & LP Good & HP Bad & LP Bad & HP

AAR [-1,+1]

treat -0.0197 -0.252** 0.387*** -0.148 -0.256 0.388 0.227
(0.0761) (0.124) (0.134) (0.219) (0.238) (0.277) (0.179)

R2 0.0565 0.0419 0.0732 0.119 0.0541 0.168 0.0786
N 29517 10035 9625 2056 4640 1647 3912

AAR [2,15]

treat -0.0127 0.0147 -0.0289 -0.0567 0.0537 -0.059 0.075
(0.0181) (0.0257) (0.0347) (0.0437) (0.0342) (0.0741) (0.0456)

R2 0.0267 0.0502 0.037 0.154 0.0906 0.173 0.0752
N 29959 10200 9740 2100 4741 1680 3955

AAR [2,30]

treat -0.00344 0.0284 -0.0204 0.00498 0.0585** -0.0506 0.0117
(0.0123) (0.0183) (0.0229) (0.0326) (0.0245) (0.0495) (0.0308)

R2 0.0352 0.057 0.05 0.121 0.117 0.161 0.102
N 29959 10200 9740 2100 4741 1680 3955

AAR [2,62]

treat 0.0101 0.0279** -0.00854 -0.00521 0.0410** -0.0218 -0.0456**
(0.00843) (0.0134) (0.0149) (0.023) (0.0168) (0.031) (0.0207)

R2 0.0513 0.0804 0.0659 0.153 0.144 0.156 0.107
N 29959 10200 9740 2100 4741 1680 3955

Note: The table reports the estimated coefficient for the Malloy (2005) regression of forecast revision on stock price.
The regression is segmented by analysts’ signal—classified as good if the forecast revision is above the previous
forecast and consensus, and bad if below. Additionally, the regression is divided by a firm’s climate physical risks:
high (HP) if above the median, and low (LP) if below the median, as per the composite physical risk measure. The
coefficient of interest is the variable treat equals 1 if the analyst has experienced at least one significant weather
event. The table includes month-year fixed effects. It also includes covariates such as market capitalization and the
standardized value of the forecast revision. The standard errors are clustered at the firm level.
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Table A18: Socially connected analysts

Social Connectedness Index High Low

(1) (2) (3) (4)
Bias Error Bias Error

treat*post -0.0944 -0.103*** -0.0305 -0.0439
(0.0679) (0.0326) (0.0678) (0.0384)

Controls Yes Yes Yes Yes
Shock*horizon FE Yes Yes Yes Yes
R2 0.268 0.305 0.302 0.348
N 33992 33992 28512 28512

Note: The table presents the baseline differences-in-differences results for analysts in the treated group, categorized
by their level of US counties’ Social Connectedness Index (columns 1-2 for socially connected and columns 3-4 for
not socially connected). The Social Connectedness Index (SCI), obtained from Bailey et al. (2018), representing
the relative probability of a Facebook friendship connection between individuals in two locations. For each treated
analyst’s county, high connection is defined as being in the top decile of the SCI, while low connection includes all
others. The results are shown for treated analysts with control analysts in socially connected cities (columns 1-2) and
those without control analysts in socially connected cities (columns 3-4). The weather shock indicator and horizon
fixed effects are included to account for shock and horizon-specific characteristics. The controls used are forecast days
gap, broker size, number of companies followed, firm experience, industries followed, and firm size. The dependent
variables are multiplied by 100 for interpretability. Standard errors are clustered at the office location.
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Table A19: Analysts gender, mindset and political donation

Analyst’s gender Female Male

(1) (2) (3) (4)
Bias Error Bias Error

treat*post 0.0590 0.0145 -0.0946 -0.101***
(0.134) (0.108) (0.0721) (0.0324)

R2 0.290 0.375 0.276 0.317
N 4926 4926 49716 49716

Analyst’s mindset Pessimistic Optimisitc

(1) (2) (3) (4)
Bias Error Bias Error

treat*post -0.102* -0.143*** -0.0324 -0.0302
(0.0562) (0.0410) (0.0903) (0.0300)

R2 0.219 0.255 0.312 0.356
N 21799 21799 35777 35777

Analyst’s donation Democratic Republican

(1) (2) (3) (4)
Bias Error Bias Error

treat*post -0.0477 -0.510*** 0.207 -0.0182
(0.0848) (0.0362) (0.135) (0.128)

Controls Yes Yes Yes Yes
Shock*horizon FE Yes Yes Yes Yes
R2 0.333 0.338 0.576 0.642
N 4554 4554 2408 2408

Note: The table presents the baseline difference-in-differences estimates for analysts’ gender, mindset, and political
donations. Gender is inferred from the analyst’s first name and categorized as either female or male. Mindset
is determined by calculating the average bias in the previous year and classifying analysts into the top tercile
of pessimism (where the top tercile represents the most pessimistic analysts) while all others are categorized as
optimistic. Similar results are obtained when defining optimists as only those in the top tercile of optimism. Political
donation data is compiled by merging individual donations to political parties from the Federal Election Commission
(FEC) database. The weather shock indicator and the horizon fixed effect are incorporated to account for shock
and horizon-specific characteristics. The controls used are forecast days gap, broker size, companies followed, firms
experience, industries followed, and firm size. The dependent variables are multiplied by 100 for interpretability
purposes. The standard errors are clustered at the office location.
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Table A20: Climate news after a weather event

Sentometrics WSJ

(1) (2) (3) (4) (5) (6)

Fatalities 0.0334 -0.0185
(0.0401) (0.0421)

Injuries -0.00776 -0.00518
(0.0408) (0.0414)

1 bil. $ damages 0.0220 -0.0348
(0.0541) (0.0556)

Year FE Yes Yes Yes Yes Yes Yes
State FE No No No No No No
R2 0.382 0.382 0.382 0.309 0.308 0.309
N 4563 4563 4563 4239 4239 4239

The table reports the estimated coefficients from the regression of the Sentometric index on news about global
warming (Ardia et al., 2020) and the Wall Street Journal (WSJ) climate news indices created by Engle et al. (2020).
State fixed effects are not included because these indices are constructed at the national level, and unfortunately, I
do not have data on local news.
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Table A21: Firms’ climate-sector risk

Definition Addoum et al. (2020) Addoum et al. (2020) and Choi et al. (2020)

Climate Sector Risk High Low High Low

(1) (2) (3) (4) (5) (6) (7) (8)
Bias Error Bias Error Bias Error Bias Error

treat*post -0.0822 -0.0625** -0.0398 -0.0829* -0.102 -0.0607** 0.0305 -0.0971*
(0.109) (0.0294) (0.0399) (0.0430) (0.0864) (0.0249) (0.0239) (0.0488)

Controls Yes Yes Yes Yes Yes Yes Yes Yes
Shock*horizon FE Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.178 0.239 0.461 0.488 0.205 0.264 0.518 0.527
N 36090 36090 21486 21486 41382 41382 16194 16194

The table presents the baseline differences-in-differences estimates for firms with high and low climate sector risks.
The first four columns use the Addoum et al. (2020) climate sector classification, which categorizes the following
industries as low risk: mining, retail, transport, information, finance, real estate, professional services, administra-
tion, education, and arts. High-risk industries include utilities, construction, manufacturing, wholesale, health, and
accommodation. The last four columns apply a combined classification from both Choi et al. (2020) and Addoum
et al. (2020), where industries are categorized as follows: low-risk sectors include retail, information, finance, real
estate, professional services, administration, education, and arts, while high-risk sectors include mining, utilities,
construction, manufacturing, wholesale, transport, health, and accommodation. The weather shock indicator and
horizon fixed effects are included to account for shock and horizon-specific characteristics. The controls used in the
model are forecast days gap, broker size, number of companies followed, analyst experience, number of industries
followed, and firm size. The dependent variables are multiplied by 100 for interpretability. Standard errors are
clustered at the office location.
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Table A22: Firms’ climate physical risk

All High Physical Risk Low Physical Risk

(1) (2) (3) (4) (5) (6)
Bias Error Bias Error Bias Error

treat*post -0.0562 -0.0337 -0.0168 -0.0131 -0.150 -0.0824**
(0.0476) (0.0507) (0.0382) (0.0765) (0.136) (0.0355)

Controls Yes Yes Yes Yes Yes Yes
Shock*horizon FE Yes Yes Yes Yes Yes Yes
R2 0.203 0.256 0.190 0.264 0.275 0.287
N 35314 35314 25112 25112 10202 10202

Note: the table shows the baseline differences-in-differences for firms in high and low composite climate physical
risk. The firm’s physical risk is a composite score of all the company’s physical risk exposure, i.e. wildfire, coldwave,
heatwave, hurricane, sea level rise, flood, and water stress (from Trucost Climate Change Physical Risk Data). The
score takes values from 1 (lowest risk) to 100 (highest risk). Firms with more (less) than the median physical risk
composite score in the sample (i.e. more than 60 points) are defined as high (low) risk. The weather shock indicator
and the horizon fixed effect are incorporated to account for shock and horizon-specific characteristics. The controls
used are forecast days gap, broker size, companies followed, firms experience, industries followed, and firm size. The
dependent variables are multiplied by 100 for interpretability purposes. The standard errors are clustered at the
office location.

Table A23: Robustness: firms’ business location

Firm business location All = shock’s state ̸= shock’s state

(1) (2) (3) (4) (5) (6)
Bias Error Bias Error Bias Error

treat*post -0.0587 -0.0721** -0.118 -0.136*** -0.0127 -0.0299
(0.0658) (0.0273) (0.0862) (0.0342) (0.0620) (0.0429)

Controls Yes Yes Yes Yes Yes Yes
Shock*horizon FE Yes Yes Yes Yes Yes Yes
R2 0.262 0.303 0.362 0.392 0.204 0.255
N 57586 57586 22138 22138 35448 35448

Note: The data is divided using the firm’s business location index developed by Garcia and Norli (2012), which
counts the number of times a firm mentions having at least one business location in a particular state within a year
in their 10-k filing. The results are reported by = shock’s state focus on firms that mention the same state as the
weather shocks at least once a year, ̸= shock’s state examine firms that do not mention the state as the weather
shock. Each specification includes weather shock times horizon fixed effect to account for shock and horizon-specific
characteristics. The controls used are forecast days gap, broker size, companies followed, firms experience, industries
followed, and firm size. The dependent variables are multiplied by 100 for interpretability purposes. The standard
errors are clustered at the office location.
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Table A24: Earnings Calls’ Dictionary: lists of unigrams and bigrams.

List Name Unigrams/Bigrams

Unigram Physi-

cal Risk

hurricane, heat, storm, flood, wildfire, heatwave, tornado, hail, tide

Bigram Physical

Risk

global warm, global warming, climate change, natural hazard, warm

climate, coastal area, snow ice, sea level, storm water, heavy snow,

water scarcity, thunderstorm wind, winter weather, extreme cold,

excessive heat, wind chill, winter storm, debris flow, storm surge,

flash flood, tropical storm

Bigram Physical

Risk (Sautner

et al., 2023)

coastal area, global warm, snow ice, friendly product, forest land,

area florida, sea level, provide water, nickel metal, storm water,

heavy snow, air water, natural hazard, sea water, warm climate,

water discharge, ice product, security energy, water act, manage-

ment district, weather snow, service reliable, management water,

ability party, hurricane, flood, wildfire, heatwave, ice control, in-

land area, non coastal, storm january, sale forest, value forest, land

forest, particularly coastal, golf ground, especially coastal, sewer

overflow, combine sewer, area coastal, large desalination, plant al-

geria, warm product, solution act, fluorine product, area inland,

fight global, sell forest, exposure coastal, city coastal, marina east,

day desalination, snow storm, typhoon, heat
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Bigram Op-

portunity Risk

(Sautner et al.,

2023)

renewable energy, electric vehicle, clean energy, new energy, wind

power, wind energy, solar energy, plug hybrid, heat power, renew-

able resource, solar farm, battery electric, electric hybrid, rein-

vestment act, issue rfp, construction megawatt, rooftop solar, grid

power, recovery reinvestment, solar generation, energy standard,

sustainable energy, vehicle charge, guangdong province, hybrid car,

charge infrastructure, micro grid, grid connect, clean efficient, car-

bon free, hybrid technology, generation renewable, energy wind,

battery charge, gas clean, vehicle lot, vehicle place, meet energy,

vehicle type, vehicle future, energy commitment, electronic con-

sumer, expand energy, gigawatt install, bus truck, ton waste, energy

research, focus renewable, pure electric, ev charge, grid technology,

geothermal power, type energy, solar program, vehicle development,

energy important, install solar, vehicle battery, energy vehicle, en-

ergy bring, vehicle space, opportunity clean, demand wind, vehicle

good, medical electronic, incremental content, supply industrial,

energy target, term electric, power world, vehicle small, renewable

electricity, wave power, carbon neutral, auction new, cost renew-

able, vehicle talk, vehicle offer, customer clean, power solar, vehicle

opportunity, community solar, energy goal, vehicle hybrid, invest

renewable, incorporate advance, talk solar, ton carbon, small hy-

dro, base solar, target gigawatt, charge network, capacity genera-

tion, vehicle add, vehicle infrastructure, solar array, energy auction,

product hybrid, product solar, exist wind
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Bigram Regula-

tory Risk (Saut-

ner et al., 2023)

greenhouse gas, reduce emission, carbon emission, carbon diox-

ide, gas emission, air pollution, reduce carbon, energy regulatory,

carbon tax, carbon price, environmental standard, nox emission,

emission trade, dioxide emission, epa regulation, energy indepen-

dence, carbon reduction, know clean, standard requirement, de-

velopment renewable, carbon market, trade scheme, deliver clean,

mercury emission, reduce air, save technology, talk clean, energy

alternative, place energy, reduce nox, air resource, target energy,

change climate, impact climate, issue air, promote energy, emis-

sion free, implement energy, recovery pollution, control regulation,

florida department, commission license, gas regulation, appeal dis-

trict, source electricity, effective energy, nitrous oxide, impact clean,

think carbon, global climate, produce carbon, clean job, efficient

natural, emission monitor, emission issue, quality permit, product

carbon, china air, reduce sulfur, available control, emission rate,

regulation low, capture sequestration, nation energy, emission year,

efficient combine, carbon economy, comply environmental, glacier

hill, hill wind, nox sox, tax australia, way comply, emission in-

tensity, oxide emission, emission improve, emission increase, install

low, commission public, castle peak, capture carbon, wait commis-

sion, emission compare, clean electricity, high hydrocarbon, emis-

sion come, weight fuel, stability reserve, quality regulation, request

public, additive process, gas carbon, epa requirement, liter diesel,

meet reduction, talk climate, expect carbon, emission ton, ambient

air, know carbon
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